首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55271篇
  免费   5605篇
  国内免费   2773篇
电工技术   3614篇
技术理论   4篇
综合类   3738篇
化学工业   8975篇
金属工艺   3441篇
机械仪表   3844篇
建筑科学   4224篇
矿业工程   1848篇
能源动力   1720篇
轻工业   3912篇
水利工程   1175篇
石油天然气   2851篇
武器工业   562篇
无线电   6283篇
一般工业技术   6597篇
冶金工业   2620篇
原子能技术   808篇
自动化技术   7433篇
  2024年   231篇
  2023年   956篇
  2022年   1764篇
  2021年   2433篇
  2020年   1816篇
  2019年   1587篇
  2018年   1782篇
  2017年   1883篇
  2016年   1773篇
  2015年   2373篇
  2014年   2958篇
  2013年   3450篇
  2012年   3987篇
  2011年   4174篇
  2010年   3654篇
  2009年   3514篇
  2008年   3312篇
  2007年   3094篇
  2006年   2926篇
  2005年   2451篇
  2004年   1851篇
  2003年   1683篇
  2002年   1760篇
  2001年   1530篇
  2000年   1226篇
  1999年   1192篇
  1998年   804篇
  1997年   651篇
  1996年   619篇
  1995年   523篇
  1994年   384篇
  1993年   320篇
  1992年   249篇
  1991年   176篇
  1990年   137篇
  1989年   89篇
  1988年   100篇
  1987年   45篇
  1986年   58篇
  1985年   27篇
  1984年   23篇
  1983年   11篇
  1982年   13篇
  1981年   7篇
  1980年   7篇
  1979年   10篇
  1977年   7篇
  1975年   5篇
  1970年   6篇
  1951年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Designing n-type polymers with high electrical conductivity remains a major challenge for organic thermoelectrics (OTEs). Herein, by devising a novel selenophene-based electron-deficient building block, the pronounced advantages of selenium substitution in simultaneously enabling advanced n-type polymers is demonstrated with high mobility (≈2 orders of magnitude higher versus their sulfur-based analogues due to both intensified intra- and inter-chain interactions) and much improved n-doping efficiency (enabled by the largely lowered LUMO level with a ≈0.2 eV margin) of the resulting polymers. Via side chain optimization and donor engineering, the selenium-substituted polymer, f-BSeI2TEG-FT, achieves a highest conductivity of 103.5 S cm−1 and power factor of 70.1 µW m−1 K−2, which are among the highest values reported in literature for n-type polymers, and f-BSeI2TEG-FT greatly outperformed the sulfur-based analogue polymer by 40% conductivity increase. These results demonstrate that selenium substitution is a very effective strategy for improving n-type performance and provide important structure-property correlations for developing high-performing n-type OTE materials.  相似文献   
992.
Despite the rapid developments are achieved for perovskite solar cells (PSCs), the existence of various defects in the devices still limits the further enhancement of the power conversion efficiency (PCE) and the long-term stability of devices. Herein, the efficient organic potassium salt (OPS) of para-halogenated phenyl trifluoroborates is presented as the precursor additives to improve the performance of PSCs. Studies have shown that the 4-chlorophenyltrifluoroborate potassium salt (4-ClPTFBK) exhibits the most effective interaction with the perovskite lattice. Strong coordination between  BF3/halogen in anion and uncoordinated Pb2+/halide vacancies, along with the hydrogen bond between F in  BF3 and H in FA+ are observed. Thus, due to the synergistic contribution of the potassium and anionic groups, the high-quality perovskite film with large grain size and low defect density is achieved. As a result, the optimal devices show an enhanced efficiency of 24.50%, much higher than that of the control device (22.63%). Furthermore, the unencapsulated devices present remarkable thermal and long-term stability, maintaining 86% of the initial PCE after thermal test at 80 °C for 1000 h and 95% after storage in the air for 2460 h.  相似文献   
993.
Thermo-responsive dielectric materials are in urgent demand owing to the rapid development of smart electronic/electrical systems. Although different types and structures of thermally responsive dielectric materials have been continuously reported, their dielectric response behaviors all originate from thermodynamic phase transitions. Herein, it is demonstrated that structural relaxation in poly(vinylidene fluoride) (PVDF), a non-thermodynamic phase transition, can induce a significant thermal dielectric pulse at room temperature. The dielectric pulse strength of up to 6.3 × 105 at 20 Hz, with a dielectric pulsing temperature of 24 °C, is achieved from polyethylene glycol (PEG)-PVDF coaxial nanofibrous films (PVDF@PEG), fabricated via a continuous blow spinning method. Moreover, the films exhibit excellent flexibility, adjustable strength and toughness, switchable hydrophilicity/hydrophobicity, and effective thermal management capability. The relaxation-induced dielectric pulsing effect, outstanding multifunctionality, and simple preparation combine to promote further scalability and prospects of PVDF@PEG. In particular, the work contributes to the discovery of the relaxation-induced dielectric response mechanism, which provides a new strategy for the generation of thermo-responsive dielectric materials.  相似文献   
994.
Photoactivatable agent is a powerful tool in biomedicine studies due to high-precision spatiotemporal control of light. However, those previously reported agents generally suffer from short wavelength, fluorescence self-quenching effect, and the lack of photosensitizing property, which severely restrict their practical applications. To address these issues, molecular engineering of 1,4-dihydropyridine derivatives is conducted to obtain an optimized agent, namely TPA-DHPy-Py, which exhibits low oxidation potential, high photoactivation efficiency, and excellent type I/II combined photodynamic activity. Concurrently, its photoactivated counterpart is featured by aggregation-induced near-infrared emission and remarkable reactive oxygen species (ROS) production efficiency. Upon photoactivation, TPA-DHPy-Py is capable of precisely identifying cancer cells from co-culturing cancer cells and normal cells without the assistance of any extra targeting units, and in situ monitoring lipid droplets and endoplasmic reticulum alteration under ROS stress, as well as achieving fluorescent visualization of tumor in vivo with supremely high imaging contrast. Furthermore, the unprecedented performance on photodynamic cancer therapy is demonstrated by the significant inhibition of tumor growth. Therefore, the photoactivatable TPA-DHPy-Py with dual-organelle-targeted and excellent photodynamic activity associated with self-monitoring ability is highly promising for cancer theranostics in clinical trials.  相似文献   
995.
High-performance damping materials are significant toward reducing vibration and maintaining stability for industrial applications. Herein, a yolk–shell piezoelectric damping mechanism is reported, which can enhance mechanical energy dissipation and improve damping capability. With the addition of yolk–shell particles and carbon nanotube (CNT) conductive network, damping properties of various resin matrices are enhanced with the energy dissipation path of mechanical to electrical to heat energy. Particularly, the peak loss factor of epoxy composites reaches 1.91 and tan δ area increases by 25.72% at 20 °C. The results prove the general applicability of yolk–shell piezoelectric damping mechanism. Besides, the novel damping materials also exhibit excellent flexibility, stretchability, and resilience, offering a promising application toward damping coating, indicating broad scope of application in transportation and sophisticated electronics, etc.  相似文献   
996.
Tumor precision therapy and preventing tumor recurrence and metastasis are the main challenges to tumor eradication. Herein, an apoptotic body-based vehicle with imaging navigation is developed for precise tumor delivery and photothermal-immunotherapy by IR820-conjugated apoptotic body loaded with R848 nanoparticles. The apoptotic body serves as ammunition stores as well as vehicle drive engines, while IR820 acts as a fluorescence imaging navigation and photothermal controlling system. The apoptotic body vehicle can deliver the ammunition to tumor and achieve deep penetration by macrophage-hitchhiking. Fluorescence imaging navigation opens a control window for photothermal treatment, followed by photothermal triggering of in situ vaccine formation. Further, CD47 antibody loaded hydrogel strengthens innate and adaptive immunity, simultaneously the polarization of macrophages regulates the immunosuppressive microenvironment to further promote the combined antitumor immunotherapy. With breast tumor (4T1)-bearing mice model, the apoptotic body vehicle performs excellent therapeutic efficacy for primary tumor, distant tumor, tumor metastasis, and recurrence prevention.  相似文献   
997.
Proton batteries have been considered as an innovative energy storage technology owing to their high safety and cost-effectiveness. However, the development of fast-charging proton batteries with high energy/power density is greatly limited by feasible material selection. Here, the pre-protonated vanadium hexacyanoferrate (H-VHCF) is developed as a proton cathode material to alleviate the capacity loss of proton-free electrode materials during electrochemical tests. The pre-protonation process realizes fast and long-distance transport of protons by shortening diffusion path and reducing migration barriers. Benefitting from the enhanced hydrogen bonding network combined with dual redox reactions of V and Fe in protonated H-VHCF cathode, a high energy density of 74 Wh kg−1 at 1.1 kW kg−1, and a maximum power density of 54 kW kg−1 at 65 Wh kg−1 is achieved for the asymmetric proton batteries coupling with MoO3/MXene anode. Proton transport and double oxidation-reduction center are verified by theoretical calculations and ex situ experimental measurements. Considering the anti-freezing availability of proton batteries, 82.5% of its initial capacity is maintained after 10000 cycles under −40 °C at 0.5 A g−1. As a proof-of-concept, flexible device fabricated by optimized electrodes and hydrogel electrolytes can power up a light-emitting diode even under a bent state.  相似文献   
998.
Nonvolatile organic photonic transistor (OPT) memories have attracted widespread attention due to their nondestructive readout, remote controllability, and robust tunability. Developing electrets with similar molecular structures but different memory behaviors and light-responsive features is crucial for light-wavelength-modulated data encryption. However, reported OPT memories have yet to meet this challenge. Here a new electret molecule (“H-PDI”) is developed via reconfiguring the linear perylene diimide molecule (“L-PDI”) to a helical shape. Respectively incorporating H-PDI and L-PDI into the floating gate layer results to H-PDI OPT and L-PDI OPT. Attributing to their remarkably different electronic structures and energy bandgaps, H-PDI OPT and L-PDI OPT preferably respond to 405 and 532 nm light irradiation, respectively. Upon electrical programming, data can be written and stored in both memories with good retention features and a high “1”/“0” state current ratio over 105, though the data can only be erased by light with correct wavelengths, rather than the electrical field. Moreover, data stored in a memory array consisting of both H-PDI OPT and L-PDI OPT can only be read out by correct inputs, and wrong inputs will lead to highly deceptive outputs. This study provides a general design strategy of OPT for advanced data encryption and protection.  相似文献   
999.
Compared to conventional photothermal therapy (PTT) which requires hyperthermia higher than 50 °C, mild-temperature PTT is a more promising antitumor strategy with much lower phototoxicity to neighboring normal tissues. However, the therapeutic efficacy of mild-temperature PTT is always restricted by the thermoresistance of cancer cells. To address this issue, a supramolecular drug nanocarrier is fabricated to co-deliver nitric oxide (NO) and photothermal agent DCTBT with NIR-II aggregation-induced emission (AIE) characteristic for mild-temperature PTT. NO can be effectively released from the nanocarriers in intracellular reductive environment and DCTBT is capable of simultaneously producing reactive oxygen species (ROS) and hyperthermia upon 808 nm laser irradiation. The generated ROS can further react with NO to produce peroxynitrite (ONOOˉ) bearing strong oxidization and nitration capability. ONOOˉ can inhibit the expression of heat shock proteins (HSP) to reduce the thermoresistance of cancer cells, which is necessary to achieve excellent therapeutic efficacy of DCTBT-based PTT at mild temperature (<50 °C). The antitumor performance of ONOOˉ-potentiated mild-temperature PTT is validated on subcutaneous and orthotopic hepatocellular carcinoma (HCC) models. This research puts forward an innovative strategy to overcome thermoresistance for mild-temperature PTT, which provides new inspirations to explore ONOOˉ-sensitized tumor therapy strategies.  相似文献   
1000.
Alloying-type metal sulfides with high theoretical capacities are promising anodes for sodium-ion batteries, but suffer from sluggish sodiation kinetics and huge volume expansion. Introducing intercalative motifs into alloying-type metal sulfides is an efficient strategy to solve the above issues. Herein, robust intercalative In S motifs are grafted to high-capacity layered Bi2S3 to form a cation-disordered (BiIn)2S3, synergistically realizing high-rate and large-capacity sodium storage. The In S motif with strong bonding serves as a space-confinement unit to buffer the volume expansion, maintaining superior structural stability. Moreover, the grafted high-metallicity Indium increases the bonding covalency of Bi S, realizing controllable reconstruction of Bi S bond during cycling to effectively prevent the migration and aggregation of atomic Bi. The novel (BiIn)2S3 anode delivers a high capacity of 537 mAh g−1 at 0.4 C and a superior high-rate stability of 247 mAh g−1 at 40 C over 10000 cycles. Further in situ and ex situ characterizations reveal the in-depth reaction mechanism and the breakage and formation of reversible Bi S bonds. The proposed space confinement and bonding covalency enhancement strategy via grafting intercalative motifs can be conducive to developing novel high-rate and large-capacity anodes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号