首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17704篇
  免费   2190篇
  国内免费   8篇
电工技术   1374篇
综合类   405篇
化学工业   8828篇
金属工艺   270篇
机械仪表   414篇
建筑科学   647篇
矿业工程   168篇
能源动力   121篇
轻工业   1713篇
水利工程   126篇
石油天然气   100篇
无线电   399篇
一般工业技术   3028篇
冶金工业   181篇
原子能技术   38篇
自动化技术   2090篇
  2023年   640篇
  2022年   428篇
  2021年   753篇
  2020年   701篇
  2019年   604篇
  2018年   578篇
  2017年   409篇
  2016年   632篇
  2015年   797篇
  2014年   845篇
  2013年   1421篇
  2012年   575篇
  2011年   460篇
  2010年   788篇
  2009年   933篇
  2008年   435篇
  2007年   401篇
  2006年   281篇
  2005年   272篇
  2004年   221篇
  2003年   212篇
  1998年   181篇
  1997年   138篇
  1996年   198篇
  1995年   184篇
  1994年   160篇
  1993年   222篇
  1992年   153篇
  1991年   126篇
  1990年   152篇
  1989年   174篇
  1988年   137篇
  1987年   164篇
  1986年   184篇
  1985年   171篇
  1984年   171篇
  1983年   178篇
  1982年   157篇
  1981年   202篇
  1980年   167篇
  1979年   171篇
  1977年   149篇
  1976年   151篇
  1975年   204篇
  1974年   189篇
  1973年   366篇
  1972年   213篇
  1971年   150篇
  1970年   146篇
  1968年   155篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
91.
Summary Theoretical and experimental analyses have been carried out for determining the injection condition below which the formation of air core does not take place in the course of flow of a time-independent power-law fluid through a swirl nozzle. Analytical solution lends one distinct value of generalized Reynolds number at the inlet to a nozzle below which the air core is not formed. Experiments reveal that there exist two limiting values of such generalized Reynolds number regarding the formation of air core in a nozzle. One value being the upper limit below which steady flow occurs without air core, the other one is the lower limit above which steady flow with fully developed air core persists. In between these two limiting values, there prevails a transition zone through which fully developed air core is set up within the nozzle. For all the nozzles, theoretical results are in fair agreement with the experimental values of upper limit of generalized Reynolds numbers with respect to steady flow without air core. Amongst all the pertinent independent geometrical parameters of a nozzle, the orifice-to-swirl chamber-diameter ratio has the remarkable influence on generalized Reynolds number describing the initiation of air core.Nomenclature D 1 Swirl chamber diameter - D 2 Orifice diameter - D s Diameter of tangential entry ports - E A non-dimensional parameter defined by Eq. (9) - E R A non-dimensional parameter defined by Eq. (25) - K Flow consistency index - L 1 Length of the swirl chamber - n Flow behaviour index - P Static pressure inside the nozzle - P b Back-pressure of the nozzle - Q Volume flow rate - R Radius vector or longitudinal coordinate with respect to spherical coordinate system (Fig. 3) - R 1 Radius of the swirl chamber - R 2 Radius of the orifice - Generalized Reynolds number at the inlet to the nozzle - Limiting value of generalized Reynolds number describing initiation of air core - R z Radius at any section - r Radial distance from the nozzle axis - r a Air core radius - u Longitudinal component of velocity with respect to spherical coordinate system (Fig. 3) - V r Radial velocity component - V z Axial velocity component - V Tangential velocity component - Tangential velocity at inlet to the nozzle - v Component of velocity in the axial plane perpendicular toR (Fig. 3) - w Component of velocity perpendicular to axial plane with respect to the spherical coordinate system (Fig. 3) - z Distance along the nozzle axis from its inlet plane - Half of the spin chamber angle - Boundary layer thickness measured perpendicularly from the nozzle wall - 2 Boundary layer thickness at the orifice - Angle, which a radius vector makes with the nozzle axis, in spherical coordinate system (Fig. 3) - Density of the fluid - Running coordinate in the azimuthal direction with respect to the cylindrical polar coordinate system as shown in Fig. 3 - Circulation constant With 8 Figures  相似文献   
92.
Dr. P. Thieler 《Computing》1978,19(4):303-312
LetA be an×n-matrix with the property I–A<1. LetY be an approximation of the inverse ofA. This paper shows how to get a componentwise error estimate forY, that does not require too much numerical effort but generally presents better results than global error estimates do. Although proved by means of interval mathematics, the given error estimate can also be calculated in absence of any implementation of interval arithmetic.
Über komponentenweise Fehlerabschätzungen für inverse Matrizen
Zusammenfassung SeiA einen×n-Matrix mit der Eigenschaft I–A<1. SeiY eine Approximation der Inversen vonA. In dieser Arbeit wird gezeigt, wie man eine komponentenweise Fehlerabschätzung fürY erhalten kann, deren Berechnung nicht sehr aufwendig ist, die aber im allgemeinen schärfer ist als globale Fehlerabschätzungen. Obwohl mit intervallmathematischen Mitteln bewiesen, kann die angegebene Fehlerabschätzung auch berechnet werden, wenn keine Intervallarithmetik implementiert ist.


This research was supported in part by Sonderforschungsbereich 72-Approximation und Optimierung, University of Bonn.  相似文献   
93.
The present paper contains a stability concept for discretization methods of a certain, very general classM, which is optimal (in the sense of yielding the best general, two-sided error bounds) without being more restrictive than any of the classical stability definitions. The optimal stability functional Ψh related to it depends on the linear part of the discretization operator, and has the important property that Ψh [δ] may be of orderq+1, i.e. Ψh [δ] = O(h q+1), even if the local error δ only has orderq, δ = O(h q). This result may be used for the construction of methods with maximum order. Its application to linear cyclic methods, for example, furnishes a new approach to the theory of linearM-cyclick-step methods of maximum order.  相似文献   
94.
The purpose of this paper is to show that for continuous functions the related quadratic splines converge without any assumption on the spline grid. The points of the interpolatory grid can be chosen between the corresponding points of the spline grid with a division ratio from \(\frac{{\sqrt 2 }}{2}\) to \(1 - \frac{{\sqrt 2 }}{2}\) . In the case of continuously differentiable functions the division ratio can even be taken between 0 and 1; in addition, the order of convergence is increased. For twice differentiable functions the full order of convergence is obtained. Analogous results about the convergence of histo splines are proved.  相似文献   
95.
An accurate acceptance-rejection algorithm is devised and tested. The procedure requires an average of less than 3 uniform deviates whenever the standard deviation of the distribution is at least 4, and this number decreases monotonically to 2.63 as . Variable parameters are permitted, and no subroutines for sampling from other statistical distributions are needed.This research was supported by the Austrian Research Council (Fonds zur Förderung der wissenschaftlichen Forschung).  相似文献   
96.
In this paper, two kinds of partial ordering for symmetric matrices are related to each other, namely, the natural partial ordering ≤ generated by the coneK of elementwise nonnegative matrices, and the definite partial ordering \( \leqslant \cdot\) generated by the coneK D of nonnegative definite matrices. The main result of this paper shows how a matrix interval in the sense of the definite partial ordering can be enclosed between optimal bounds with respect to the natural partial ordering. By means of this result, it is possible to compute a numerically practicable inclusion based on the natural partial ordering from a given inclusion of some matrix with the definite partial ordering. In this way, an always and moreover quadratically convergent method of elementwise enclosing the square root of a positive definite, symmetric matrix can be constructed.  相似文献   
97.
An iterative method of solving quasilinear hyperbolic equations of the type $$ - [p_1 (u_x ,x,t)]_x + [p_2 (u_t ,x,t)]_t = f(x,t)$$ in the domain (0, 1)×(0,T) is proposed. For each given initial-boundary-value problem of this type with boundary conditions of the first kind (second kind), a conjugate problem of the same type that has boundary conditions of the second kind (first kind) is defined. From the relations connecting the solutions of a pair of conjugate problems, a series of wave equations is created. The method proposed consists in calculating the solutions of the wave equations of this series. Theoretical proof of the convergence of the solutions of the wave equations to the solutions of the conjugate quasilinear problems is left as an open question. However, numerical results are presented to demonstrate that, under favorable circumstances, the solutions of the wave equations do converge to the solutions of the conjugate quasilinear problems.  相似文献   
98.
Summary Combined unsteady convection from an isothermal horizontal cylinder in a stream flowing vertically upwards has been investigated. Numerical solutions of the unsteady boundary-layer equations have been obtained at any station along the cylinder using the series truncation method. Solutions which are valid near the front and near stagnation points have been obtained using standard finite-difference methods. A series solution in powers of time has been obtained with which the numerical solutions has been checked.
Unstetige, gemischte Konvektion um einen isothermen Kreiszylinder
Zusammenfassung Es wird eine kombinierte, unstetige Konvektion eines isothermen, horizontalen Zylinders in einer vertikal nach oben gerichteten Strömung untersucht. Numerische Lösungen der unstetigen Grenzschichtgleichungen werden an jeder Stelle längs des Zylinders durch die Verwendung der Reihenabbruchsmethode erhalten.Nahe der Vorderseite und nahe bei den Staupunkten gültige Lösungen werden durch Verwendung üblicher Methoden der finiten Differenzen erhalten. Mit Hilfe einer Reihenlösung in Potenzen der Zeit wird das numerische Ergebnis überprüft.

Notation a radius of the cylinder - g acceleration of gravity - G r Grashof number =g|T|a 3/v 2 - Q heat transfer - R e Reynolds number =U 0 a/v - T temperature of fluid in the boundary layer - T 0 temperature of the ambient fluid - T 1 temperature of the cylinder - T temperature difference=T 1T 0 - t time - U 0 free stream - x co-ordinate measuring distance round the cylinder - y co-ordinate measuring distance normal to the cylinder - G r /R e 2 - coefficient of expansion - coefficient of kinematic viscosity - w skin friction With 7 Figures  相似文献   
99.
Let the space curveL be defined implicitly by the (n, n+1) nonlinear systemH(u)=0. A new direct Newton-like method for computing turning points ofL is described that requires per step only the evaluation of one Jacobian and 5 function values ofH. Moreover, a linear system of dimensionn+1 with 4 different right hand sides has to be solved per step. Under suitable conditions the method is shown to converge locally withQ-order two if a certain discretization stepsize is appropriately chosen. Two numerical examples confirm the theoretical results.  相似文献   
100.
Zusammenfassung MARKAL ist ein LP-Modell der Energieversorgung, mit dem für die Internationale Energieagentur Rechnungen zur langfristigen Technologiepolitik zur Öleinsparung durchgeführt werden. Als Mehrperiodenmodell deckt es einen Planungszeitraum von 40 Jahren ab und umfaßt alle wesentlichen Sektoren und Umwandlungsprozesse der Energiewirtschaft. Optimierungsrechnungen, die die Energieversorgung der wesentlichen westlichen Industriestaaten umfassen, zeigen unter anderem auf, daß die Chancen einer substantiellen Öleinsparung skeptisch zu beurteilen sind.
MARKAL is a linear programming model of the energy supply used by the International Energy Agency for a long term technology evaluation to save oil. As a multi-period model, it covers a planning period of 40 years for all important sectors and technical processes within the energy economy. The model applications to the energy supplies of most industrialized western countries justify a certain scepticism about the chances for a substantial oil saving in the future.


Diese Arbeit wurde als Vortrag auf der Sitzung der DGOR-Arbeitsgruppe Praxis der linearen Optimierung (PRALINE) unter dem Generalthema Energieplanung am 18. 1. 1980 in Jülich präsentiert.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号