首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18907篇
  免费   2163篇
  国内免费   5篇
电工技术   1443篇
综合类   404篇
化学工业   8808篇
金属工艺   278篇
机械仪表   411篇
建筑科学   671篇
矿业工程   167篇
能源动力   140篇
轻工业   1815篇
水利工程   119篇
石油天然气   69篇
无线电   778篇
一般工业技术   3192篇
冶金工业   610篇
原子能技术   71篇
自动化技术   2099篇
  2023年   621篇
  2022年   321篇
  2021年   665篇
  2020年   667篇
  2019年   575篇
  2018年   556篇
  2017年   382篇
  2016年   623篇
  2015年   791篇
  2014年   828篇
  2013年   1434篇
  2012年   571篇
  2011年   455篇
  2010年   787篇
  2009年   950篇
  2008年   483篇
  2007年   434篇
  2006年   326篇
  2005年   316篇
  2004年   286篇
  2003年   298篇
  2002年   174篇
  2001年   180篇
  1998年   372篇
  1997年   257篇
  1996年   299篇
  1995年   268篇
  1994年   206篇
  1993年   277篇
  1992年   187篇
  1991年   162篇
  1990年   180篇
  1989年   212篇
  1988年   177篇
  1987年   183篇
  1986年   211篇
  1985年   199篇
  1984年   195篇
  1983年   192篇
  1982年   173篇
  1981年   226篇
  1980年   179篇
  1979年   181篇
  1977年   156篇
  1976年   164篇
  1975年   206篇
  1974年   192篇
  1973年   370篇
  1972年   214篇
  1968年   153篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
911.
912.
Himeic acid A, which is produced by the marine fungus Aspergillus japonicus MF275, is a specific inhibitor of the ubiquitin‐activating enzyme E1 in the ubiquitin–proteasome system. To elucidate the mechanism of himeic acid biosynthesis, feeding experiments with labeled precursors have been performed. The long fatty acyl side chain attached to the pyrone ring is of polyketide origin, whereas the amide substituent is derived from leucine. These results suggest that a polyketide synthase–nonribosomal peptide synthase (PKS‐NRPS) is involved in himeic acid biosynthesis. A candidate gene cluster was selected from the results of genome sequencing analysis. Disruption of the PKS‐NRPS gene by Agrobacterium‐mediated transformation confirms that HimA PKS‐NRPS is involved in himeic acid biosynthesis. Thus, the him biosynthetic gene cluster for himeic acid in A. japonicus MF275 has been identified.  相似文献   
913.
Pyridomycin is an antimycobacterial cyclodepsipeptide assembled by a nonribosomal peptide synthetase/polyketide synthase hybrid system. Analysis of its cluster revealed a nonribosomal peptide synthetase (NRPS) module, PyrG, that contains two tandem adenylation domains and a PKS‐type ketoreductase domain. In this study, we biochemically validated that the second A domain recognizes and activates α‐keto‐β‐methylvaleric acid (2‐KVC) as the native substrate; the first A domain was not functional but might play a structural role. The KR domain catalyzed the reduction of the 2‐KVC tethered to the peptidyl carrier protein of PyrG in the presence of the MbtH family protein, PyrH. PyrG was demonstrated to recognize many amino acids. This substrate promiscuity provides the potential to generate pyridomycin analogues with various enolic acids moiety; this is important for binding InhA, a critical enzyme for cell‐wall biosynthesis in Mycobacterium tuberculosis.  相似文献   
914.
The unique five‐membered aminocyclitol core of the antitumor antibiotic pactamycin originates from d ‐glucose, so unprecedented enzymatic modifications of the sugar intermediate are involved in the biosynthesis. However, the order of the modification reactions remains elusive. Herein, we examined the timing of introduction of an amino group into certain sugar‐derived intermediates by using recombinant enzymes that were encoded in the pactamycin biosynthesis gene cluster. We found that the NAD+‐dependent alcohol dehydrogenase PctP and pyridoxal 5′‐phosphate dependent aminotransferase PctC converted N‐acetyl‐d ‐glucosaminyl‐3‐aminoacetophonone into 3′‐amino‐3′‐deoxy‐N‐acetyl‐d ‐glucosaminyl‐3‐aminoacetophenone. Further, N‐acetyl‐d ‐glucosaminyl‐3‐aminophenyl‐β‐oxopropanoic acid ethyl ester was converted into the corresponding 3′‐amino derivative. However, PctP did not oxidize most of the tested d ‐glucose derivatives, including UDP‐GlcNAc. Thus, modification of the GlcNAc moiety in pactamycin biosynthesis appears to occur after the glycosylation of aniline derivatives.  相似文献   
915.
Bovine α‐lactalbumin (aLA) and oleate (OA) form a complex that has been intensively studied for its tumoricidal activity. Small‐angle X‐ray scattering (SAXS) has revealed that this complex consists of a lipid core surrounded by partially unfolded protein. We call this type of complex a liprotide. Little is known of the molecular interactions between OA and aLA, and no technique has so far provided any high‐resolution structure of a liprotide. Here we have used coarse‐grained (CG) molecular dynamics (MD) simulations, isothermal titration calorimetry (ITC) and SAXS to investigate the interactions between aLA and OA during the process of liprotide formation. With ITC we found that the strongest enthalpic interactions occurred at a molar ratio of 12.0±1.4:1 OA/aLA. Liprotides formed between OA and aLA at several OA/aLA ratios in silico were stable both in CG and in all‐atom simulations. From the simulated structures we calculated SAXS spectra that show good agreement with experimentally measured patterns of matching liprotides. The simulations showed that aLA assumes a molten globular (MG) state, exposing several hydrophobic patches involved in interactions with OA. Initial binding of aLA to OA occurs in an area of aLA in which a high amount of positive charge is located, and only later do hydrophobic interactions become important. The results reveal how unfolding of aLA to expose hydrophobic residues is important for complex formation between aLA and OA. Our findings suggest a general mechanism for liprotide formation and might explain the ability of a large number of proteins to form liprotides with OA.  相似文献   
916.
Peanut allergy can be life‐threatening and is mediated by allergen‐specific immunoglobulin E (IgE) antibodies. Investigation of IgE antibody binding to allergenic epitopes can identify specific interactions underlying the allergic response. Here, we report a surface plasmon resonance imaging (SPRi) immunoassay for differentiating IgE antibodies by epitope‐resolved detection. IgE antibodies were first captured by magnetic beads bearing IgE ?‐chain‐specific antibodies and then introduced into an SPRi array immobilized with epitopes from the major peanut allergen glycoprotein Arachis hypogaea h2 (Ara h2). Differential epitope responses were achieved by establishing a binding environment that minimized cross‐reactivity while maximizing analytical sensitivity. IgE antibody binding to each Ara h2 epitope was distinguished and quantified from patient serum samples (10 μL each) in a 45 min assay. Excellent correlation of Ara h2‐specific IgE values was found between ImmunoCAP assays and the new SPRi method.  相似文献   
917.
918.
The multidomain, catalytically self‐sufficient cytochrome P450 BM‐3 from Bacillus megaterium (P450BM3) constitutes a versatile enzyme for the oxyfunctionalization of organic molecules and natural products. However, the limited stability of the diflavin reductase domain limits the utility of this enzyme for synthetic applications. In this work, a consensus‐guided mutagenesis approach was applied to enhance the thermal stability of the reductase domain of P450BM3. Upon phylogenetic analysis of a set of distantly related P450s (>38 % identity), a total of 14 amino acid substitutions were identified and evaluated in terms of their stabilizing effects relative to the wild‐type reductase domain. Recombination of the six most stabilizing mutations generated two thermostable variants featuring up to tenfold longer half‐lives at 50 °C and increased catalytic performance at elevated temperatures. Further characterization of the engineered P450BM3 variants indicated that the introduced mutations increased the thermal stability of the FAD‐binding domain and that the optimal temperature (Topt) of the enzyme had shifted from 25 to 40 °C. This work demonstrates the effectiveness of consensus mutagenesis for enhancing the stability of the reductase component of a multidomain P450. The stabilized P450BM3 variants developed here could potentially provide more robust scaffolds for the engineering of oxidation biocatalysts.  相似文献   
919.
Nitriles, which are mostly needed and produced by the chemical industry, play a major role in various industry segments, ranging from high‐volume, low‐price sectors, such as polymers, to low‐volume, high‐price sectors, such as chiral pharma drugs. A common industrial technology for nitrile production is ammoxidation as a gas‐phase reaction at high temperature. Further popular approaches are substitution or addition reactions with hydrogen cyanide or derivatives thereof. A major drawback, however, is the very high toxicity of cyanide. Recently, as a synthetic alternative, a novel enzymatic approach towards nitriles has been developed with aldoxime dehydratases, which are capable of converting an aldoxime in one step through dehydration into nitriles. Because the aldoxime substrates are easily accessible, this route is of high interest for synthetic purposes. However, whenever a novel method is developed for organic synthesis, it raises the question of substrate scope as one of the key criteria for application as a “synthetic platform technology”. Thus, the scope of this review is to give an overview of the current state of the substrate scope of this enzymatic method for synthesizing nitriles with aldoxime dehydratases. As a recently emerging enzyme class, a range of substrates has already been studied so far, comprising nonchiral and chiral aldoximes. This enzyme class of aldoxime dehydratases shows a broad substrate tolerance and accepts aliphatic and aromatic aldoximes, as well as arylaliphatic aldoximes. Furthermore, aldoximes with a stereogenic center are also recognized and high enantioselectivities are found for 2‐arylpropylaldoximes, in particular. It is further noteworthy that the enantiopreference depends on the E and Z isomers. Thus, opposite enantiomers are accessible from the same racemic aldehyde and the same enzyme.  相似文献   
920.
The functions of Trp612, Leu734, and Tyr736 of Euphorbia tirucalli β‐amyrin synthase were examined. The aliphatic variants (Ala, Val, Met) of Trp612 showed almost no activity, but the aromatic variants exhibited high activities: 12.5 % of the wild‐type activity for the W612H variant, 43 % for W612F, and 63 % for W612Y. That is, the enzymatic activities of the variants increased in proportion to the increase in π‐electron density. Thus, the major function of Trp612 is to stabilize transient cations through a cation–π interaction. The Phe and Tyr variants caused a distorted folding conformation, especially at the E‐ring site, which generated the aberrantly cyclized products germanicol and lupeol. The L734G and L734A variants exhibited significantly decreased activities but yielded taraxerol in a high production ratio. The Val, Ile, and Met variants showed markedly high activities (56–78 % of wild‐type activity); therefore, appropriate steric bulk is required at this position. The aliphatic variants of Tyr736 showed markedly decreased activities, but the Phe mutant exhibited high activity (67 %), which indicates that the π electrons are critical for catalysis. Homology modeling indicated that Tyr736 and Leu734 are perpendicular to the substrate and are situated face to face, which suggests that a CH–π interaction occurs between Tyr736 and Leu734, reinforcing the protein architecture, and that Tyr736 cannot stabilize cationic intermediates through a cation–π interaction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号