首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87篇
  免费   6篇
电工技术   3篇
化学工业   17篇
金属工艺   2篇
机械仪表   2篇
建筑科学   5篇
能源动力   6篇
轻工业   7篇
水利工程   2篇
无线电   11篇
一般工业技术   8篇
冶金工业   6篇
自动化技术   24篇
  2023年   3篇
  2021年   3篇
  2020年   1篇
  2019年   7篇
  2018年   4篇
  2017年   4篇
  2016年   2篇
  2015年   3篇
  2014年   3篇
  2013年   5篇
  2012年   10篇
  2011年   7篇
  2010年   8篇
  2009年   6篇
  2008年   4篇
  2007年   6篇
  2005年   3篇
  2004年   3篇
  2002年   1篇
  1998年   3篇
  1997年   4篇
  1996年   2篇
  1995年   1篇
排序方式: 共有93条查询结果,搜索用时 187 毫秒
91.
BACKGROUND: Food‐isolated lactic acid bacteria can transform ferulic acid (FA) into several products. Since quantification of these metabolites during the different bacterial growth phases is lacking, the aim of this study was to identify and quantify conversion products of FA and to follow the kinetics of FA metabolism during growth of Lactobacillus plantarum and Lactobacillus collinoides. RESULTS: Lactobacillus plantarum and Lactobacillus collinoides were incubated in MRS broth, to which different amounts of FA were added (final concentrations of 0, 0.5, 1.5 and 3 mmol L?1), at 30 °C until the late stationary phase. Lactobacillus plantarum metabolised FA into 4‐vinylguaiacol (4‐VG) and hydroferulic acid (HFA). Conversion to 4‐VG started simultaneously with the degradation of FA, while formation of HFA started in the mid‐exponential phase. Lactobacillus collinoides only formed 4‐VG, mainly in the stationary phase. No significant effect of the different amounts of FA was seen on the growth and fermentation characteristics of both bacteria. CONCLUSION: The results demonstrate that both bacteria are able to convert FA. However, start of conversion differs between the two strains. The different amounts of FA had no influence on the growth and fermentation characteristics of both bacteria. Copyright © 2012 Society of Chemical Industry  相似文献   
92.
The necessity for early interaction between the embryo and the oviductal and/or uterine environment in the horse is reflected by several striking differences between equine embryos that develop in vivo and those produced in vitro. Better understanding of the salient interactions may help to improve the efficiency of in vitro equine embryo production. In an initial experiment, cleavage-stage in vitro-produced (IVP) equine embryos were transferred into the uterus of recipient mares that had ovulated recently to determine whether premature placement in this in vivo environment would improve subsequent development. In a second experiment, an important element of the uterine environment was mimicked by adding uterocalin, a major component of the endometrial secretions during early pregnancy, to the culture medium. Intrauterine transfer of cleavage-stage IVP equine embryos yielded neither ultrasonographically detectable pregnancies nor day 7 blastocysts, indicating that the uterus is not a suitable environment for pre-compact morula stage horse embryos. By contrast, exposure to uterocalin during IVP improved capsule formation, although it did not measurably affect the development or expression of a panel of genes known to differ between in vivo and in vitro embryos. Further studies are required to evaluate whether uterocalin serves purely as a carrier protein or more directly promotes improved capsule development.  相似文献   
93.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号