首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2819篇
  免费   181篇
  国内免费   1篇
电工技术   37篇
化学工业   784篇
金属工艺   50篇
机械仪表   128篇
建筑科学   129篇
矿业工程   8篇
能源动力   106篇
轻工业   450篇
水利工程   17篇
石油天然气   11篇
无线电   187篇
一般工业技术   369篇
冶金工业   115篇
原子能技术   11篇
自动化技术   599篇
  2024年   11篇
  2023年   37篇
  2022年   73篇
  2021年   149篇
  2020年   112篇
  2019年   133篇
  2018年   110篇
  2017年   115篇
  2016年   126篇
  2015年   98篇
  2014年   143篇
  2013年   245篇
  2012年   179篇
  2011年   216篇
  2010年   174篇
  2009年   162篇
  2008年   121篇
  2007年   124篇
  2006年   109篇
  2005年   80篇
  2004年   63篇
  2003年   54篇
  2002年   55篇
  2001年   32篇
  2000年   33篇
  1999年   23篇
  1998年   32篇
  1997年   24篇
  1996年   22篇
  1995年   16篇
  1994年   14篇
  1993年   18篇
  1992年   5篇
  1991年   6篇
  1990年   5篇
  1989年   5篇
  1988年   6篇
  1987年   4篇
  1986年   8篇
  1985年   9篇
  1984年   10篇
  1983年   13篇
  1982年   5篇
  1981年   3篇
  1978年   5篇
  1977年   3篇
  1976年   3篇
  1975年   3篇
  1970年   2篇
  1968年   1篇
排序方式: 共有3001条查询结果,搜索用时 15 毫秒
61.
A mathematical model for polymerization kinetics and molar mass development in the nitroxide-mediated polymerization (NMP) of vinyl monomers in supercritical carbon dioxide (scCO2) has been developed. The method of moments is used for molar mass development. The perturbed-chain statistical associating fluid theory (PC-SAFT) equation of state is used to estimate the number of stable phases present at equilibrium in the reaction mixture, critical number average chain length at which polymer particles are formed, and monomer concentration in each phase. Pure and binary PC-SAFT interaction parameters are estimated from liquid–liquid equilibrium (LLE) and liquid–vapour equilibrium (LVE) experimental data at 60 to 129°C. The effect of pressure on monomer conversion and molar mass development in the polymerization of styrene (Sty) using benzoyl peroxide (BPO) and 2,2,6,6-Tetramethylpiperidinyl-1-oxyl (TEMPO) at 120°C and 300–500 bar is studied. It was observed that increasing pressure increases polymerization rate without significantly affecting molar mass development.  相似文献   
62.
The current study compares the antibacterial activity of zinc oxide nanostructures (neZnO). For this purpose, two bacterial strains, Escherichia coli (ATCC 4157) and Staphylococcus aureus (ATCC 29213) were challenged in room light conditions with the aforementioned materials. Colloidal and hydrothermal methods were used to obtain the quasi-round and quasi-diamond platelet-shape nanostructures. Thus, the oxygen vacancy (VO) effects on the surface of neZnO are also considered to assess its effects on antibacterial activity. The neZnO characterization was achieved by X-ray diffraction (XRD), a selected area electron diffraction (SAED) and Raman spectroscopy. The microstructural effects were monitored by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Furthermore, optical absorption ultraviolet visible spectrophotometry (UV-Vis) and X-ray photoelectron spectroscopy (XPS) analyses complement the physical characterization of these nanostructures; neZnO caused 50 % inhibition (IC50) at concentrations from 0.064 to 0.072 mg/mL for S. aureus and from 0.083 to 0.104 mg/mL for E. coli, indicating an increase in activity against S. aureus compared to E. coli. Consequently, quasi-diamond platelet-shaped nanostructures (average particle size of 377.6±10 nm) showed enhanced antibacterial activity compared to quasi-round agglomerated particles (average size of 442.8±12 nm), regardless of Vo presence or absence.  相似文献   
63.
Hydrogel silver nanocomposites have been used in applications with excellent antibacterial performance. Acrylic acid (AA)/itaconic acid (IA) hydrogels silver nanocomposites were prepared and applied as a coating on a textile substrate. Hydrogel matrices were synthesized first by the polymerization of an AA/IA aqueous (80/20 v/v) solution and mixed with 2‐2‐azobis(2‐methylpropionamide) diclorohydrate and N,N′‐methylene bisacrylamide until the hydrogel was formed. Silver nanoparticles were generated throughout the hydrogel networks with an in situ method via the incorporation of the silver ions and subsequent reduction with sodium borohydride. Cotton (C) and cotton/polyester (CP) textile fibers were then coated with these hydrogel silver nanocomposites. The influence of these nanocomposite hydrogels on the properties of the textile fiber were investigated by infrared spectroscopy (attenuated total reflectance), scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, and antibacterial tests against Pseudomona aeruginosa and Staphylococcus aureus. The better conditions, in which no serious aggregation of the silver nanoparticles occurred, were determined. It was proven that the textiles coated with hydrogels containing nanosilver had an excellent antibacterial abilities. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2713–2721, 2013  相似文献   
64.
An interesting technique was proposed by Ray et al. over a decade ago to determine the number density of nucleation sites, Nq, or the nucleation rate, I(T), in glasses that exhibit internal nucleation. Their approach is based on the measurement of the areas under the differential scanning calorimetry (DSC) crystallization peaks of partially crystallized glass samples. In this study, we review their method and test a modified equation recently proposed by some of us, which also takes into account the crystal morphology and impingement. We compare Nq obtained with both methods for a Li2O·2SiO2 glass. Small glass monoliths were treated at 620°C for different time periods for crystal growth, without any nucleation treatment, and subsequently analyzed by DSC up to 800°C. We thus estimated Nq from the area under the DSC crystallization peaks. The corrected approach resulted in Nq values which were not affected by the pair of growth times chosen, as expected, but the obtained values were two‐ to fivefold lower than those calculated with the Ray model. Taking into account previously reported nucleation rates and the corresponding induction periods as a function of temperature (for specimens of the same glass batch), we estimated the number of nuclei formed during the DSC heating/cooling steps, and also measured them by optical microscopy (OM). Finally, we compared the obtained values from OM with the Nq values determined by the DSC method. The Nq resulting from the original and new equations were approximately two orders of magnitude larger than those experimentally determined for the same glass using optical microscopy. This difference is attributed to the formation of new nuclei during the heating and cooling paths of the DSC runs and to surface crystallization, which are not taken into account in the DSC expressions.  相似文献   
65.
Vinyl acetate (VAc) was polymerized by a seeded semicontinuous heterogeneous process. Stable latexes with a polymer/surfactant weight ratio of 65 were obtained, which is comparable with the highest value reported in the literature for emulsion polymerization but with the advantage of obtaining smaller particles (average diameter, Dp = 53 nm) which are similar to those obtained by microemulsion polymerization. The surfactant (sodium dodecylsulfate, SDS) concentration used in the recipe (0.32 wt%) is much lower than those typically used in microemulsion polymerization. Although molar masses increased during the continuous monomer addition period, they were small at the end of the reaction (Mn = 69 × 103 g·mol–1) and this was attributed to bimolecular termination inside the particles. The values of polymerization rate (Rp) and monomer addition rate (Fm) were nearly the same, indicating that polymerization was performed under monomer starved conditions. POLYM. ENG. SCI., 2013. © 2013 Society of Plastics Engineers  相似文献   
66.
Vinyl acetate (VAc) and butyl acrylate (BuA) were copolymerized in heterophase by a semicontinuous process (unseeded) and compared with the seeded semicontinuous microemulsion polymerization of the same monomers. A mixture of sodium dodecyl sulfate (SDS) and poly(ethylene oxide) dodecyl ether (Brij‐35®) were used as surfactants. The effects of monomer addition rate (Ra) and surfactants concentrations (4 or 1 wt % with respect to the initial mixture of reaction) on polymer and latex properties were studied. High copolymer content latexes (24–36 wt %) with average particle diameters (Dp) from 38 to 55 nm and relatively narrow particle size distributions, high polymerization rates, weight ratios of polymer to surfactant (P/S) from 13.3 to 32.8 were obtained. The number‐average molecular weights (Mn) were between 96,000 and 188,000 g/mol. Homogeneous copolymer compositions were obtained throughout the reaction for both, seeded and unseeded processes, which is not possible by the usual batch microemulsion process. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   
67.
68.
ABSTRACT

In recent years, there has been an increasing interest in repairing offshore steel structures by using adhesively joined carbon fiber reinforced polymers (CFRP). For such procedure, surface preparation plays a vital role to maintain the integrity of the joint and to ensure proper load transfer. The primary surface preparation used by the oil and gas industry is the grit blasting due to its known quality. However, the logistic required is a major drawback limiting the use of adhesively joined repairs. Other surface preparation procedures available are unable to promote proper treatment. In this paper, an alternative surface preparation methodology employing a portable machine that uses rotation and impact to treat the steel surface was evaluated by quasi-static and fatigue tests of CFRP/steel adhesively bonded using the double-lap joints. The joints were prepared using non-corroded and severely corroded steel surfaces treated by grit blasting or rotating impact machine. The corroded plate was used to evaluate the efficiency of the rotating impact machine in removing deeply penetrating oxides. Test results showed that the performance of the machine was comparable to grit blasting even for the severely corroded surface with deep pitting. Corrosion in the metallic substrate impaired the quasi-static and fatigue properties.  相似文献   
69.
Carbon nanofibres have been prepared by a floating catalyst procedure at industrial scale in a metallic furnace. The nanofibres (50-500 nm diameter and 5-200 μm length) are grown from the Fe particles used as catalyst. Soot appears together with the carbon nanofibres. The sample has been chemically activated using KOH as activating agent. Scanning electron microscopy has shown a smooth surface for the as-prepared carbon nanofibres but a rough surface for the activated ones. The specific surface area increases from 13 to 212 m2/g due to the activation. The volume of the micropores (in the 1-2 nm range) and the mesopores (2-5 nm range), as deduced by density functional theory methods, also increases after the activation. Electrochemical behaviour of the as-prepared and activated carbon nanofibres has been tested in a supercapacitor at laboratory scale using 6 M KOH aqueous solution as electrolyte. The specific capacitance, which is less than 1 F/g for the as-prepared sample, increase up to ≈60 F/g for the activated sample. Only a slight decrease in capacitance has been observed as the current density increases. Specific power of ≈100 W/kg at specific energy of 1 Wh/kg has been found in some particular cases. We have compared the electrochemical parameters of our activated carbon nanofibres with those of activated carbon nanofibres coming from a commercial sample; the latter was activated by the same way as our sample.  相似文献   
70.
In order to develop and test the integration procedure, in this paper a real time process integration involving the optimization and control of the process is presented, in this case, with the two-layer approach. The used optimization algorithms were Levenberg–Marquardt and SQP that solve a non-linear least square problem subject to bounds on the variables. The two-layer approach is a hierarchical control structure where an optimization layer calculates the set points and manipulated variables to the advanced controller, which is based on the dynamic matrix control with constraints (QDMC). The non-isothermal dynamic model of the three-phase slurry catalytic reactor with appropriate solution procedure was utilized in this work (Vasco de Toledo, E. C., Santana, P. L., Maciel, M. R. W., & Maciel Filho, R. (2001). Dynamic modeling of a three-phase catalytic slurry reactor. Chemical Engineering Science, 56, 6055–6061). The model consists on mass and heat balance equations for the catalyst particles as well as for the bulk phases of gas and liquid. The model was used to describe the dynamic behavior of hydrogenation reaction of o-cresol to obtain 2-methil-cyclohexanol, in the presence of a catalyst Ni/SiO2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号