首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   756篇
  免费   53篇
  国内免费   9篇
电工技术   17篇
综合类   3篇
化学工业   212篇
金属工艺   22篇
机械仪表   24篇
建筑科学   36篇
矿业工程   1篇
能源动力   55篇
轻工业   48篇
水利工程   6篇
石油天然气   4篇
无线电   65篇
一般工业技术   144篇
冶金工业   24篇
原子能技术   10篇
自动化技术   147篇
  2024年   5篇
  2023年   13篇
  2022年   33篇
  2021年   56篇
  2020年   61篇
  2019年   42篇
  2018年   86篇
  2017年   48篇
  2016年   45篇
  2015年   28篇
  2014年   56篇
  2013年   97篇
  2012年   58篇
  2011年   62篇
  2010年   41篇
  2009年   32篇
  2008年   9篇
  2007年   13篇
  2006年   11篇
  2005年   4篇
  2004年   4篇
  2003年   4篇
  2002年   1篇
  1999年   2篇
  1994年   2篇
  1992年   2篇
  1991年   1篇
  1987年   1篇
  1979年   1篇
排序方式: 共有818条查询结果,搜索用时 15 毫秒
61.
A combination of reduced graphene oxide (rGO) nanosheets grafted with regioregular poly(3‐hexylthiophene) (P3HT) (rGO‐g‐P3HT) and P3HT‐b‐polystyrene (PS) block copolymers was utilized to modify the morphology of P3HT:[6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) active layers in photovoltaic devices. Efficiencies greater than 6% were acquired after a mild thermal annealing. To this end, the assembling of P3HT homopolymers and P3HT‐b‐PS block copolymers onto rGO‐g‐P3HT nanosheets was investigated, showing that the copolymers were assembled from the P3HT side onto the rGO‐g‐P3HT nanosheets. Assembling of P3HT‐b‐PS block copolymers onto the rGO‐g‐P3HT nanosheets developed the net hole and electron highways for charge transport, thereby in addition to photoluminescence quenching the charge mobility (μh and μe) values increased considerably. The best charge mobilities were acquired for the P3HT50000:PC71BM:rGO‐g‐P3HT50000:P3HT7000b‐PS1000 system (μh = 1.9 × 10?5 cm2 V–1 s–1 and μe = 0.8 × 10?4 cm2 V–1 s–1). Thermal annealing conducted at 120 °C also further increased the hole and electron mobilities to 9.8 × 10?4 and 2.7 × 10?3 cm2 V–1 s–1, respectively. The thermal annealing acted as a driving force for better assembly of the P3HT‐b‐PS copolymers onto the rGO‐g‐P3HT nanosheets. This phenomenon improved the short circuit current density, fill factor, open circuit voltage and power conversion efficiency parameters from 11.13 mA cm?2, 0.63 V, 62% and 4.35% to 12.98 mA cm?2, 0.69 V, 68% and 6.09%, respectively. © 2019 Society of Chemical Industry  相似文献   
62.
In this paper, the side effects of drug therapy in the process of cancer treatment are reduced by designing two optimal non‐linear controllers. The related gains of the designed controllers are optimised using genetic algorithm and simultaneously are adapted by employing the Fuzzy scheduling method. The cancer dynamic model is extracted with five differential equations, including normal cells, endothelial cells, cancer cells, and the amount of two chemotherapy and anti‐angiogenic drugs left in the body as the engaged state variables, while double drug injection is considered as the corresponding controlling signals of the mentioned state space. This treatment aims to reduce the tumour cells by providing a timely schedule for drug dosage. In chemotherapy, not only the cancer cells are killed but also other healthy cells will be destroyed, so the rate of drug injection is highly significant. It is shown that the simultaneous application of chemotherapy and anti‐angiogenic therapy is more efficient than single chemotherapy. Two different non‐linear controllers are employed and their performances are compared. Simulation results and comparison studies show that not only adding the anti‐angiogenic reduce the side effects of chemotherapy but also the proposed robust controller of sliding mode provides a faster and stronger treatment in the presence of patient parametric uncertainties in an optimal way. As a result of the proposed closed‐loop drug treatment, the tumour cells rapidly decrease to zero, while the normal cells remain healthy simultaneously. Also, the injection rate of the chemotherapy drug is very low after a short time and converges to zero.  相似文献   
63.
The optimal design for heat recovery steam generator (HRSG) should be chosen based on technical and economic considerations. Therefore, parameters that are related to thermodynamic and economic aspects should be considered in optimization approaches. It is worth mentioning that one of the significant issues in the HRSG design is the diversity of arrangements between various components (economizer, evaporator, and superheater), which absolutely affect the HRSG performance. According to these facts, in the present article, different arrangements of a dual pressure HRSG are analyzed, and the economizer at the high‐pressure level is divided into two parts; these arrangements are optimized by applying different optimization approaches to achieve the optimal configuration. These approaches include the reduction of gas pressure drop, the reduction of generated steam cost and the consideration of both approaches as the third approach. These three approaches are also considered to perform economic and thermodynamic optimization. With regard to the limitations of optimization such as the pinch and approach point, seven different configurations are considered. First, a comprehensive model is developed for calculating thermodynamic, heat transfer, and pressure loss. To perform a thorough optimization, both thermodynamic and geometric variables as well as diversity of various arrangements is considered using genetic algorithm. The results of the optimization study show that the best arrangement is not unique, and each arrangement has different characteristics. Hence, the best arrangement for the HRSG is chosen according to the importance of the objective functions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
64.
Polypropylene (PP) was modified utilizing two types of polyesteramide‐based hyperbranched polymers (amphiphilic PS and hydrophilic PH). A maleicanhydride‐modified PP (PM) was used as a reactive dispersing agent to enhance the modification by grafting the hyperbranched polymers onto the PP chains. Pure PP, two different non‐reactively modified samples, i.e. excluding PM, and two different reactively modified samples, i.e. including PM, were studied. Investigating the morphology of the samples was performed by scanning electron microscopy. To follow the effect of the modification on the dynamic mechanical properties, dynamic mechanical analysis experiments both in the melt (rheometric mechanical spectrometry) and in solid state (dynamic mechanical thermal analysis) were carried out. In the next step, the nanocrystalline structure of the samples was studied by small angle X‐ray scattering (SAXS) in two different modes, i.e. static and recrystallization. Hundreds of SAXS patterns were analyzed automatically using procedures written in PV‐WAVE image‐processing software. The chord distribution function (CDF) was calculated and the long period (lp) of the crystal lamellae was extracted from the CDFs. The rheometric mechanical spectrometry results show that both hyperbranched polymers decrease complex viscosity η* and enhance liquid‐like behavior. This happens more significantly when PM is included. The dynamic mechanical thermal analysis results reveal that Tg decreases when PS and PH are added. In the reactively modified samples this reduction is compensated most probably because of the crosslinked structure formed through the grafting reaction between the hyperbranched polymers and PM. Such structure is confirmed by SAXS data and calculated CDFs in the recrystallization mode. Static SAXS data also show enhancement in the crosshatched morphology of the crystalline lamellae of PP for reactively modified samples compared with non‐reactively modified samples. © 2013 Society of Chemical Industry  相似文献   
65.
Sarvi  Iraj  Zahedi  Ehsan 《Catalysis Letters》2022,152(6):1895-1903
Catalysis Letters - In this work, without using any linker or chemical modification of graphene oxide, a zinc oxide immobilized graphene oxide-based catalyst was used for the direct aerobic...  相似文献   
66.
67.
Mathematical models of botnet propagation dynamics are increasingly deemed to have potential for significant contribution to botnet mitigation. Botnet virulence, which comprises network vulnerability rate and network infection rate, is a key factor in those models. In this paper we discuss a practical approach that draws on epidemiological models in biology to estimate the botnet virulence in a network. Our research provides mathematical models of botnet propagation dynamics with concrete measures of botnet virulence, which make those models practical and hence employable in mitigation of real world botnets in a timely fashion. The approach is based on random sampling and follows a novel application of statistical learning and inference in a botnet-versus-network setting. We have implemented this research in the Matlab programming language. In this paper, we discuss an experimental evaluation of the effectiveness of this research with respect to botnet propagation dynamics realistically simulated in a GTNetS network simulation platform.  相似文献   
68.
One of the most important challenges in treating cancer is the invasion and the angiogenesis of cancer cells. The synthesis of green nanoparticles (NPs) and their use in therapeutic fields is one of the most effective methods with minimal side effects in cancer treatment. In this study, cytotoxic and anti‐angiogenic effects of silver NPs (AgNPs) coated with palm pollen extract [Ag–PP(NPs)] were evaluated. For this purpose, the cells were treated with NPs and then were subjected to trypan blue testing (48 h). Then, the cancer invasion was evaluated by the scratch procedure and the expressions of the vascular endothelial growth factor (VEGF) and its receptor (VEGF‐R) genes were estimated using real‐time PCR assay. Also, the angiogenesis effect of the NPs was investigated with chick chorioallantoic membrane (CAM) assay. The Ag–PP(NPs) induced cytotoxicity on MCF7 cells. The findings also showed that Ag–PP(NPs) inhibit invasive cancer cells and reduce the expression of VEGF and VEGF‐R and significantly reduced the number and vessels lengths and the lengths and weights of the embryos in CAM assay. Ag–PP(NPs) with the induction of cytotoxic effects, metastatic inhibition and anti‐angiogenesis properties should be considered as an appropriate option for treatment of cancerInspec keywords: nanomedicine, genetics, cellular biophysics, toxicology, patient treatment, silver, cancer, biochemistry, biomedical materials, nanoparticles, nanofabrication, membranesOther keywords: minimal side effects, cancer treatment, silver NPs, cancer invasion, vascular endothelial growth factor, receptor genes, VEGF‐R, real‐time polymerase chain reaction assay, angiogenesis effect, chick chorioallantoic membrane assay, MCF7 cells, invasive cancer cells, cytotoxic effects, putative mechanism, anticancer properties, antiangiogenic effects, antiangiogenesis properties, Ag–PP‐induced cytotoxicity, metastatic inhibition, palm pollen extraction, trypan blue testing, time 48.0 hour, Ag  相似文献   
69.
Detergents are an absolute requirement for studying the structure of membrane proteins. However, many conventional detergents fail to stabilise denaturation‐sensitive membrane proteins, such as eukaryotic proteins and membrane protein complexes. New amphipathic agents with enhanced efficacy in stabilising membrane proteins will be helpful in overcoming the barriers to studying membrane protein structures. We have prepared a number of deoxycholate‐based amphiphiles with carbohydrate head groups, designated deoxycholate‐based glycosides (DCGs). These DCGs are the hydrophilic variants of previously reported deoxycholate‐based N‐oxides (DCAOs). Membrane proteins in these agents, particularly the branched diglucoside‐bearing amphiphiles DCG‐1 and DCG‐2, displayed favourable behaviour compared to previously reported parent compounds (DCAOs) and conventional detergents (LDAO and DDM). Given their excellent properties, these agents should have significant potential for membrane protein studies.  相似文献   
70.
Cellulose acetate (CA) is highly comparable to other synthetic polymer materials and is effective in the hemodialysis process. In this work, asymmetric CA membranes were synthesized with the phase‐inversion method. CA with a molecular weight of 52,000, poly(ethylene glycol) (PEG) with a molecular weight of 400, and 1‐methyl‐2‐pyrrolidone (NMP) were used as the polymer, additive, and solvent, respectively. The effects of the CA and PEG concentrations and coagulation bath temperature (CBT) on the morphology, pure water permeability (PWP), insulin/human serum albumin (HSA) transmission, and finally thermal and chemical stability of the prepared membranes were determined and investigated. In general, increasing the PEG concentration and CBT and reducing the CA concentration resulted in increased PWP and insulin/HSA transmission. Also, these variations facilitated the formation of macrovoids in the membrane sublayer. On the other hand, increasing the PEG and CA concentrations and reducing CBT resulted in increased thermal and chemical stability of the prepared membranes. Also, ratios of 15.5/10/74.5 and 17.5/10/72.5 (w/w) for the CA/PEG/NMP casting solutions and their immersion into coagulation baths with CBTs of 0 and 25°C, respectively, resulted in the preparation of membranes that had not only optimum sieving properties and higher PWP but also thermal and chemical stability better than that of conventional CA hemodialysis membranes. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号