首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   451篇
  免费   22篇
电工技术   2篇
综合类   1篇
化学工业   276篇
金属工艺   4篇
机械仪表   7篇
建筑科学   15篇
能源动力   18篇
轻工业   13篇
水利工程   1篇
石油天然气   10篇
无线电   13篇
一般工业技术   73篇
冶金工业   4篇
自动化技术   36篇
  2024年   1篇
  2023年   16篇
  2022年   104篇
  2021年   78篇
  2020年   16篇
  2019年   16篇
  2018年   15篇
  2017年   15篇
  2016年   27篇
  2015年   8篇
  2014年   24篇
  2013年   26篇
  2012年   28篇
  2011年   28篇
  2010年   12篇
  2009年   9篇
  2008年   16篇
  2007年   7篇
  2006年   7篇
  2005年   4篇
  2004年   6篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1973年   1篇
排序方式: 共有473条查询结果,搜索用时 31 毫秒
91.
An automated column fabrication technique that is based on a ultraviolet (UV) light-emitting diode (LED) array oven, and provides precisely controlled "in-capillary" ultraviolet (UV) initiated polymerization at 365 nm, is presented for the production of open tubular monolithic porous polymer layer capillary (monoPLOT) columns of varying length, inner diameter (ID), and porous layer thickness. The developed approach allows the preparation of columns of varying length, because of an automated capillary delivery approach, with precisely controlled and uniform layer thickness and monolith morphology, from controlled UV power and exposure time. The relationships between direct exposure times, intensity, and layer thickness were determined, as were the effects of capillary delivery rate (indirect exposure rate), and multiple exposures on the layer thickness and axial distribution. Layer thickness measurements were taken by scanning electron microscopy (SEM), with the longitudinal homogeneity of the stationary phase confirmed using scanning capacitively coupled contactless conductivity detection (sC(4)D). The new automated UV polymerization technique presented in this work allows the fabrication of monoPLOT columns with a very high column-to-column production reproducibility, displaying a longitudinal phase thickness variation within ±0.8% RSD (relative standard deviation).  相似文献   
92.
Nanoparticle synthesis has drawn great attention in the last decades. The study of crystal growth mechanisms and optimization of the existing methods lead to the increasing accessibility of nanomaterials, such as gold nanotriangles which have great potential in the fields of plasmonics and catalysis. To form such structures, a careful balance of reaction parameters has to be maintained. Herein, a novel synthesis of gold nanotriangles from seeds derived with a micromixer, which provides a highly efficient mixing and simple parameter control is reported. The impact of the implemented reactor on the primary seed characteristics is investigated. The following growth steps are studied to reveal the phenomena affecting the shape yield. The use of microfluidic seeds led to the formation of well-defined triangles with a narrower size distribution compared to the entirely conventional batch synthesis. A shortened two-step procedure for the formation of triangles directly from primary seeds, granting an express but robust synthesis is further described. Moreover, the need for a thorough study of seed crystallinity depending on the synthesis conditions, which – together with additional parameter optimization – will bring a new perspective to the use of micromixers which are promising for scaling up nanomaterial production is highlighted.  相似文献   
93.
Abstract

Fullerene C60 is known as a promising therapeutic agent due to its antioxidant, anti-inflammatory and other properties, along with the lack of noticeable toxicity. In this article, we describe antiviral properties of aqueous fullerene C60 dispersion (ndC60) produced by biocompatible diafiltration technology and C60 amino derivatives against Herpes simplex virus type 1 (HSV-1) and Human cytomegalovirus (HCMV) infections. Their activity in vitro was evaluated by a plaque reduction assay using Vero and HF cells in pre- and post-treatment modes. Therapeutic efficacy of dnC60 and C60 derivatives was studied in DBA mice using cutaneous model of HSV-1 infection. Data obtained indicated low cytotoxicity of all used compounds for both cell lines (CC50 > 1?mg/ml). The antiviral activity of dnC60 in most tests exceeded the activity of both C60 amino adducts and acyclovir (ACV), and it demonstrated significant therapeutic effect against HSV-1 skin infection in mice.  相似文献   
94.
Robust Parameter Estimation in Dynamic Systems   总被引:1,自引:0,他引:1  
In this paper we present a practical method for robust parameter estimation in dynamic systems. In our study we follow the very successful approach for solving optimization problems in dynamic systems, namely the boundary value problem (BVP) approach. The suggested method combines multiple shooting for parameterizing dynamics, a flexible realization of the BVP principle, with a fast Gauss-Newton algorithm for solving the resulting constrained l 1 problem. We give an overview of the theoretical background as well as the details of a numerical implementation. We discuss why the Gauss-Newton algorithm, which is known to perform well mainly on well-conditioned problems, is appropriate for parameter estimation problems, while quasi-Newton methods have only limited use for parameter estimation. The method is implemented on the basis of the direct multiple shooting method as implemented in PARFIT, thus inheriting all basic properties of PARFIT such as numerical stability, reliability and efficiency. The new code has been successfully applied to real-life parameter estimation problems in enzyme and chemical kinetics.  相似文献   
95.
Super‐resolution fluorescence microscopy enables imaging of fluorescent structures beyond the diffraction limit. However, this technique cannot be applied to weakly fluorescent cellular components or labels. As an alternative, photothermal microscopy based on nonradiative transformation of absorbed energy into heat has demonstrated imaging of nonfluorescent structures including single molecules and ~1‐nm gold nanoparticles. However, previously photothermal imaging has been performed with a diffraction‐limited resolution only. Herein, super‐resolution, far‐field photothermal microscopy based on nonlinear signal dependence on the laser energy is introduced. Among various nonlinear phenomena, including absorption saturation, multiphoton absorption, and signal temperature dependence, signal amplification by laser‐induced nanobubbles around overheated nano‐objects is explored. A Gaussian laser beam profile is used to demonstrate the image spatial sharpening for calibrated 260‐nm metal strips, resolving of a plasmonic nanoassembly, visualization of 10‐nm gold nanoparticles in graphene, and hemoglobin nanoclusters in live erythrocytes with resolution down to 50 nm. These nonlinear phenomena can be used for 3D imaging with improved lateral and axial resolution in most photothermal methods, including photoacoustic microscopy.  相似文献   
96.
We present the role of tungsten additions on the mechanical properties of a Fe‐based structural amorphous metal (SAM2×5‐630) containing crystalline tungsten. Matrix cracking by microindentation is inhibited by the addition of tungsten and indicates that tungsten improves the fracture toughness. Response surfaces from nanoindentation arrays indicate that the hardness and modulus of the matrix phase are increased by tungsten additions. Bulk composites with 30 vol% tungsten subjected to 4‐point flexure exhibited brittle fracture behavior and the characteristic strength and Weibull modulus were 165 and 8.7 MPa, respectively. The addition of tungsten did not cause devitrification of the matrix phase.  相似文献   
97.
Encapsulation systems are urgently needed both as micrometer and sub‐micrometer capsules for active chemicals' delivery, to encapsulate biological objects and capsules immobilized on surfaces for a wide variety of advanced applications. Methods for encapsulation, prolonged storage and controllable release are discussed in this review. Formation of stimuli responsive systems via layer‐by‐layer (LbL) assembly, as well as via mobile chemical bonding (hydrogen bonds, chemisorptions) and formation of special dynamic stoppers are presented. The most essential advances of the systems presented are multifunctionality and responsiveness to a multitude of stimuli – the possibility of formation of multi‐modal systems. Specific examples of advanced applications – drug delivery, diagnostics, tissue engineering, lab‐on‐chip and organ‐on‐chip, bio‐sensors, membranes, templates for synthesis, optical systems, and antifouling, self‐healing materials and coatings – are provided. Finally, we try to outline emerging developments.  相似文献   
98.
We report on the experiments on the interaction of gigawatt femtosecond laser pulses with suspended millimeter-sized water droplets. The transparent droplets experienced laser-induced breakdown and explosive boiling up and emitted a broadband radiation. This radiation covers the spectral range from 450 to 1100?nm and consists of the spectrum of laser pulse scattered and transformed by the droplet due to self-phase modulation and plasma emission produced in water during photoionization. The droplet emission spectrum showed remarkable broadening at all viewing angles and is maximal in the direction of the laser exit from the droplet. The enlargement of the droplet results in additional spectral spreading of the emitted radiation. The depth and amount of laser pulse spectral self-transformations upon propagation through the water droplet are simulated by means of numerical calculations.  相似文献   
99.
Biological responses to photothermal effects of gold nanoparticles (GNPs) have been demonstrated and employed for various applications in diverse systems except for one important class – plants. Here, the uptake of GNPs through Arabidopsis thaliana roots and translocation to leaves are reported. Successful plasmonic nanobubble generation and acoustic signal detection in planta is demonstrated. Furthermore, Arabidopsis leaves harboring GNPs and exposed to continuous laser or noncoherent light show elevated temperatures across the leaf surface and induced expression of heat‐shock regulated genes. Overall, these results demonstrate that Arabidopsis can readily take up GNPs through the roots and translocate the particles to leaf tissues. Once within leaves, GNPs can act as photothermal agents for on‐demand remote activation of localized biological processes in plants.  相似文献   
100.
Efficiently identifying and quantifying disease- or treatment-related changes in the abundance of proteins is an important area of research for the pharmaceutical industry. Here we describe an automated, label-free method for finding differences in complex mixtures using complete LC-MS data sets, rather than subsets of extracted peaks or features. The method selectively finds statistically significant differences in the intensity of both high-abundance and low-abundance ions, accounting for the variability of measured intensities and the fact that true differences will persist in time. The method was used to compare two complex peptide mixtures with known peptide differences. This controlled experiment allowed us to assess the validity of each difference found and so to analyze the method's sensitivity and specificity. The method detects both presence versus absence and a 2-fold change in peptide concentration near the limit of detection of the instrument used, where chromatographic peaks may not be sufficiently well defined to be detected in individual samples. The method is more sensitive and gives fewer false positives than subtractive methods that ignore signal variability. Differential mass spectrometry combined with targeted MS/MS analysis of only identified differences may save both computation time and human effort compared to shotgun proteomics approaches.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号