首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3603篇
  免费   239篇
  国内免费   1篇
电工技术   13篇
综合类   2篇
化学工业   1557篇
金属工艺   48篇
机械仪表   59篇
建筑科学   88篇
矿业工程   6篇
能源动力   82篇
轻工业   686篇
水利工程   17篇
石油天然气   16篇
无线电   137篇
一般工业技术   541篇
冶金工业   150篇
原子能技术   11篇
自动化技术   430篇
  2024年   6篇
  2023年   75篇
  2022年   409篇
  2021年   357篇
  2020年   125篇
  2019年   124篇
  2018年   138篇
  2017年   150篇
  2016年   136篇
  2015年   108篇
  2014年   157篇
  2013年   214篇
  2012年   232篇
  2011年   240篇
  2010年   173篇
  2009年   181篇
  2008年   172篇
  2007年   147篇
  2006年   115篇
  2005年   97篇
  2004年   76篇
  2003年   61篇
  2002年   59篇
  2001年   34篇
  2000年   28篇
  1999年   34篇
  1998年   34篇
  1997年   28篇
  1996年   25篇
  1995年   19篇
  1994年   9篇
  1993年   12篇
  1992年   3篇
  1991年   7篇
  1989年   4篇
  1987年   3篇
  1986年   3篇
  1985年   2篇
  1984年   5篇
  1983年   5篇
  1982年   4篇
  1981年   4篇
  1980年   2篇
  1979年   6篇
  1975年   3篇
  1974年   3篇
  1973年   2篇
  1971年   4篇
  1969年   2篇
  1934年   1篇
排序方式: 共有3843条查询结果,搜索用时 15 毫秒
101.
102.
In this paper we introduce a model describing a layered structure composed by two thermoelastic adherents and a thin adhesive subject to a degradation process. By an asymptotic expansion method, we derive a model of imperfect interface coupling damage and temperature evolution. Moreover, assuming that the behaviour of the adhesive is ruled by two different regimes, one in traction and one in compression, we derive a second limit model where unilateral contact conditions on the interface are also included.  相似文献   
103.
104.
Being both a cause and a victim of water scarcity and nutrient deficiency, agriculture as a sustainable livelihood is dependent now on finding new suport solutions. Biodegradable hydrogels usage as soil conditioners may be one of the most effective solutions for irrigation efficiency improvement, reducing the quantity of soluble fertilizers per crop cycle and combating pathogens, due to their versatility assured by both obtaining method and properties. The first goal of the work was the obtaining by electron beam irradiation and characterization of some Sodium Alginate-g-acrylamide/acrylic Acid hydrogels, the second one being the investigation of their potential use as a soil conditioner by successive experiments of absorption and release of two different aqueous nutrient solutions. Alginate-g-acrylamide/acrylic Acid hydrogels were obtained by electron beam irradiation using the linear accelerator ALID 7 at 5.5 MeV at the irradiation doses of 5 and 6 kGy. For this were prepared monomeric solutions that contained 1 and 2% sodium alginate, acrylamide and acrylic acid in ratios of 1:1 and 1.5:1, respectively, for the obtaining of materials with hybrid properties derived from natural and synthetic components. Physical, chemical, structural and morphological characteristics of the obtained hydrogels were investigated by specific analysis using swelling, diffusion and network studies and Fourier Transform Infrared Spectroscopy and Scanning Electron Microscopy. Four successive absorption and release experiments of some synthetic and natural aqueous solutions with nutrients were performed.  相似文献   
105.
Cortical spreading depolarization (CSD) is the neuronal correlate of migraine aura and the reliable consequence of acute brain injury. The role of CSD in triggering headaches that follow migraine aura and brain injury remains to be uncertain. We examined whether a single CSD occurring in awake animals modified the expression of proinflammatory cytokines (Il1b, TNF, and Il6) and endogenous mediators of nociception/neuroinflammation-pannexin 1 (Panx1) channel and calcitonin gene-related peptide (CGRP), transforming growth factor beta (TGFb) in the cortex. Unilateral microinjury of the somatosensory cortex triggering a single CSD was produced in awake Wistar rats. Three hours later, tissue samples from the lesioned cortex, intact ipsilesional cortex invaded by CSD, and homologous areas of the contralateral sham-treated cortex were harvested and analyzed using qPCR. Three hours post-injury, intact CSD-exposed cortexes increased TNF, Il1b, Panx1, and CGRP mRNA levels. The strongest upregulation of proinflammatory cytokines was observed at the injury site, while CGRP and Panx1 were upregulated more strongly in the intact cortexes invaded by CSD. A single CSD is sufficient to produce low-grade parenchymal neuroinflammation with simultaneous overexpression of Panx1 and CGRP. The CSD-induced molecular changes may contribute to pathogenic mechanisms of migraine pain and post-injury headache.  相似文献   
106.
The growth of microbial multidrug resistance is a problem in modern clinical medicine. Chemical modification of active pharmaceutical ingredients is an attractive strategy to improve their biopharmaceutical properties by increasing bioavailability and reducing drug toxicity. Conjugation of antimicrobial drugs with natural polysaccharides provides high efficiency of these systems due to targeted delivery, controlled drug release and reduced toxicity. This paper reports a two-step synthesis of colistin conjugates (CT) with succinyl chitosan (SucCS); first, we modified chitosan with succinyl anhydride to introduce a carboxyl function into the polymer molecule, which was then used for chemical grafting with amino groups of the peptide antibiotic CT using carbodiimide chemistry. The resulting polymeric delivery systems had a degree of substitution (DS) by CT of 3–8%, with conjugation efficiencies ranging from 54 to 100% and CT contents ranging from 130–318 μg/mg. The size of the obtained particles was 100–200 nm, and the ζ-potential varied from −22 to −28 mV. In vitro release studies at pH 7.4 demonstrated ultra-slow hydrolysis of amide bonds, with a CT release of 0.1–0.5% after 12 h; at pH 5.2, the hydrolysis rate slightly increased; however, it remained extremely low (1.5% of CT was released after 12 h). The antimicrobial activity of the conjugates depended on the DS. At DS 8%, the minimum inhibitory concentration (MIC) of the conjugate was equal to the MIC of native CT (1 µg/mL); at DS of 3 and 5%, the MIC increased 8-fold. In addition, the developed systems reduced CT nephrotoxicity by 20–60%; they also demonstrated the ability to reduce bacterial lipopolysaccharide-induced inflammation in vitro. Thus, these promising CT-SucCS conjugates are prospective for developing safe and effective nanoantibiotics.  相似文献   
107.
The temporomandibular joint (TMJ) is a specialized synovial joint that is crucial for the movement and function of the jaw. TMJ osteoarthritis (TMJ OA) is the result of disc dislocation, trauma, functional overburden, and developmental anomalies. TMJ OA affects all joint structures, including the articular cartilage, synovium, subchondral bone, capsule, ligaments, periarticular muscles, and sensory nerves that innervate the tissues. The present review aimed to illustrate the main pathomechanisms involving cartilage and bone changes in TMJ OA and some therapeutic options that have shown potential restorative properties regarding these joint structures in vivo. Chondrocyte loss, extracellular matrix (ECM) degradation, and subchondral bone remodeling are important factors in TMJ OA. The subchondral bone actively participates in TMJ OA through an abnormal bone remodeling initially characterized by a loss of bone mass, followed by reparative mechanisms that lead to stiffness and thickening of the condylar osteochondral interface. In recent years, such therapies as intraarticular platelet-rich plasma (PRP), hyaluronic acid (HA), and mesenchymal stem cell-based treatment (MSCs) have shown promising results with respect to the regeneration of joint structures or the protection against further damage in TMJ OA. Nevertheless, PRP and MSCs are more frequently associated with cartilage and/or bone repair than HA. According to recent findings, the latter could enhance the restorative potential of other therapies (PRP, MSCs) when used in combination, rather than repair TMJ structures by itself. TMJ OA is a complex disease in which degenerative changes in the cartilage and bone develop through intricate mechanisms. The regenerative potential of such therapies as PRP, MSCs, and HA regarding the cartilage and subchondral bone (alone or in various combinations) in TMJ OA remains a matter of further research, with studies sometimes obtaining discrepant results.  相似文献   
108.
Arterial stiffness is a major vascular complication of chronic kidney disease (CKD). The development of renal damage, hypertension, and increased pulse wave velocity (PWV) in CKD might be associated with an imbalance in bone morphogenetic proteins (BMP)-2 and BMP-7. Plasma BMP-2 and BMP-7 were determined by ELISA in CKD patients (stages I–III; n = 95) and Munich Wistar Frömter (MWF) rats. Age-matched Wistar rats were used as a control. The expression of BMP-2, BMP-7, and profibrotic and calcification factors was determined in kidney and perivascular adipose tissues (PVAT). BMP-2 was higher in stage III CKD patients compared to control subjects. BMP-7 was lower at any CKD stage compared to controls, with a significant further reduction in stage III patients. A similar imbalance was observed in MWF rats together with the increase in systolic (SBP) and diastolic blood pressure (DBP), or pulse wave velocity (PWV). MWF exhibited elevated urinary albumin excretion (UAE) and renal expression of BMP-2 or kidney damage markers, Kim-1 and Ngal, whereas renal BMP-7 was significantly lower than in Wistar rats. SBP, DBP, PWV, UAE, and plasma creatinine positively correlated with the plasma BMP-2/BMP-7 ratio. Periaortic and mesenteric PVAT from MWF rats showed an increased expression of BMP-2 and profibrotic and calcification markers compared to Wistar rats, together with a reduced BMP-7 expression. BMP-2 and BMP-7 imbalance in plasma, kidney, and PVATs is associated with vascular damage, suggesting a profibrotic/pro-calcifying propensity associated with progressive CKD. Thus, their combined analysis stratified by CKD stages might be of clinical interest to provide information about the degree of renal and vascular damage in CKD.  相似文献   
109.
Due to its essential role in cellular processes, actin is a common target for bacterial toxins. One such toxin, TccC3, is an effector domain of the ABC-toxin produced by entomopathogenic bacteria of Photorhabdus spp. Unlike other actin-targeting toxins, TccC3 uniquely ADP-ribosylates actin at Thr-148, resulting in the formation of actin aggregates and inhibition of phagocytosis. It has been shown that the fully modified F-actin is resistant to depolymerization by cofilin and gelsolin, but their effects on partially modified actin were not explored. We found that only F-actin unprotected by tropomyosin is the physiological TccC3 substrate. Yet, ADP-ribosylated G-actin can be produced upon cofilin-accelerated F-actin depolymerization, which was only mildly inhibited in partially modified actin. The affinity of TccC3-ADP-ribosylated G-actin for profilin and thymosin-β4 was weakened moderately but sufficiently to potentiate spontaneous polymerization in their presence. Interestingly, the Arp2/3-mediated nucleation was also potentiated by T148-ADP-ribosylation. Notably, even partially modified actin showed reduced bundling by plastins and α-actinin. In agreement with the role of these and other tandem calponin-homology domain actin organizers in the assembly of the cortical actin network, TccC3 induced intense membrane blebbing in cultured cells. Overall, our data suggest that TccC3 imposes a complex action on the cytoskeleton by affecting F-actin nucleation, recycling, and interaction with actin-binding proteins involved in the integration of actin filaments with each other and cellular elements.  相似文献   
110.
Background: ICOS and its ligand ICOSL are immune receptors whose interaction triggers bidirectional signals that modulate the immune response and tissue repair. Aim: The aim of this study was to assess the in vivo effects of ICOSL triggering by ICOS-Fc, a recombinant soluble form of ICOS, on skin wound healing. Methods: The effect of human ICOS-Fc on wound healing was assessed, in vitro, and, in vivo, by skin wound healing assay using ICOS−/− and ICOSL−/− knockout (KO) mice and NOD-SCID-IL2R null (NSG) mice. Results: We show that, in wild type mice, treatment with ICOS-Fc improves wound healing, promotes angiogenesis, preceded by upregulation of IL-6 and VEGF expression; increases the number of fibroblasts and T cells, whereas it reduces that of neutrophils; and increases the number of M2 vs. M1 macrophages. Fittingly, ICOS-Fc enhanced M2 macrophage migration, while it hampered that of M1 macrophages. ICOS−/− and ICOSL−/− KO, and NSG mice showed delayed wound healing, and treatment with ICOS-Fc improved wound closure in ICOS−/− and NSG mice. Conclusion: These data show that the ICOS/ICOSL network cooperates in tissue repair, and that triggering of ICOSL by ICOS-Fc improves cutaneous wound healing by increasing angiogenesis and recruitment of reparative macrophages.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号