The integration of light‐harvesting proteins and other photosynthetic molecular machinery with semiconductor surfaces plays an important role in improving their performance as solar‐cell materials. Phycocyanin is one such protein that can be employed for this purpose. Phycocyanins have light‐harvesting properties and belong to the phycobilisome protein family. They are present in cyanobacteria, which capture light energy and funnel it to reaction centers during photosynthesis. Here, a way of increasing the photocurrent of hematite by covalent cross‐coupling with phycocyanin is reported. For this, a hematite–phycocyanin integrated system is assembled by consecutive adsorption and cross‐coupling of protein molecules, separated by an agarose layer and a linker molecule, on the top of a mesoporous hematite film. The hematite–phycocyanin assembly shows a two‐fold increased photocurrent in comparison with pristine hematite film. The increase in the photocurrent is attributed to the enhanced light absorption of the hematite film after integration with the protein, as is evident from the UV–vis spectra and from the photocurrent‐action spectrum. The assembly shows long‐term stability and thus constitutes a promising hybrid photoanode for photo‐electrochemical applications. 相似文献
Osteons, the main organizational components of human compact bone, are cylindrical structures composed of layers of mineralized collagen fibrils, called lamellae. These lamellae have different orientations, different degrees of organization, and different degrees of mineralization where the intrafibrillar and extrafibrillar minerals are intergrown into one continuous network of oriented crystals. While cellular activity is clearly the source of the organic matrix, recent in vitro studies call into question whether the cells are also involved in matrix mineralization and suggest that this process could be simply driven by the interactions of the mineral with extracellular matrix. Through the remineralization of demineralized bone matrix, the complete multiscale reconstruction of the 3D structure and composition of the osteon without cellular involvement are demonstrated. Then, this cell-free in vitro system is explored as a realistic, functional model for the in situ investigation of matrix-controlled mineralization processes. Combined Raman and electron microscopy indicate that glycosaminoglycans (GAGs) play a more prominent role than generally assumed in the matrix–mineral interactions. The experiments also show that the organization of the collagen is in part a result of its interaction with the developing mineral. 相似文献
This research reviews challenges in building sustainable relationships between the parties involved in the crowdfunding and crowdsourcing projects, which are running in extreme situations, such as the COVID-19 pandemic. This study aims to solve problems that generate the crowdsourcing concerns and to find better alternatives to increase trust for crowdfunding among donors, as this impacts their strategic sustainability in the conditions of turbulence and COVID-induced financial crisis. It was found that factors influence donor decisions in different ways, yet the common tendency for donor activity is non-monotonicity. Future development in the field of sustainable relationships should focus on creating a donor classification system.
This paper presents an overview of test and reliability approaches for approximate computing architectures. We focus on how specific methods for test and reliability can be used to improve the characteristics of approximate computing in terms of power consumption, area, life expectancy and precision. This paper does not address specification and design of approximate hardware/software/algorithms, but provides an in-depth knowledge on how the reliability and test related techniques can be efficiently used to maximize the benefits of approximate computing. 相似文献
Three dimensional optical data storage is one of the most promising tools to respond to the always growing demand for high data storage capacity. Here, we focused a femtosecond laser source by means of a confocal microscope onto different transparent recording media. The purpose of the study is to probe the capability of the system to independently address different data layers within the storage medium achieving thus three dimensional data storage. We demonstrated the possibility to write superposed independent layers of data due to either multiphoton excitation or to local optical breakdown and the performances observed in the different types of media used are compared. 相似文献
We study the transient gratings photogenerated in the picosecond regime in three families of structures, namely : - structures of thickness in the order of one micron, including quantum wells (GaAs/GaAlAs, CdTe/ CdZnTe). A transmission modulation due to the electric field has been observed. We show that, in accordance with our calculations, this modulation is screened faster than 10 ps at a fluence of a few µJ/cm2. - A structure including GalnAs/GalnAsP MQWS in a cavity. This structure shows a top diffraction efficiency of 2.5 × 10-2 at 1.55 µm for an energy of excitation in the order of 100 µJ/cm2. The diffraction efficiency exhibits several oscillations due to Fabry-Pårot effects. By introducing cavity effects in our model, we show that the diffraction efficiency is amplified by more than a factor 2 with respect to the no-cavity case. Calculations show that the diffraction efficiency may reach 6 × 10-2 around 1.625 µm, for a front mirror reflectivity of 90 %. - Structures including bulk GaAs microcavities. The risetime is lower or in the order of 1 ps while the diffraction efficiency attains 1 %, with an average power of 4 mW (i.e. an energy of 2 µJ/cm2/pulse), compatible with a commutation of packets at 80 MHz. 相似文献
The adsorptive properties of the isoreticular series [Ni8(OH)4(H2O)2(BDP_X)6] (H2BDP_X = 1,4‐bis(pyrazol‐4‐yl)benzene‐4‐X with X = H (1), OH (2), NH2 (3)) can be enhanced by postsynthetic treatment with an excess of KOH in ethanol. In the case of X = H, NH2, this treatment leads to partial removal of the organic linkers, deprotonation of coordinated water molecules and introduction of extraframework cations, giving rise to materials of K[Ni8(OH)5(EtO)‐(H2O)2(BDP_X)5.5] (1@KOH, 3@KOH) formulation, in which the original framework topology is maintained. By contrast, the same treatment with KOH in the [Ni8(OH)4(H2O)2(BDP_OH)6] (2) system, enclosing the more acidic phenol residues, leads to a new material containing a larger fraction of missing linker defects and extra‐framework cations as well as phenolate residues, giving rise to the material K3[Ni8(OH)3(EtO)(H2O)6(BDP_O)5] (2@KOH), which also conserves the original face cubic centered (fcu) topology. It is noteworthy that the introduction of missing linker defects leads to a higher accessible pore volume with a concomitant increased adsorption capacity. Moreover, the creation of coordinatively unsaturated metal centers, charge gradients, and phenolate nucleophilic sites in 2@KOH gives rise to a boosting of CO2 capture features with increased adsorption heat and adsorption capacity, as proven by the measurement of pulse gas chromatography and breakthrough curve measurements of simulated flue gas. 相似文献
Biomimetic materials with biomechanical properties resembling those of native tissues while providing an environment for cell growth and tissue formation, are vital for tissue engineering (TE). Mechanical anisotropy is an important property of native cardiovascular tissues and directly influences tissue function. This study reports fabrication of anisotropic cell‐seeded constructs while retaining control over the construct's architecture and distribution of cells. Newly synthesized poly‐4‐hydroxybutyrate (P4HB) is fabricated with a dry spinning technique to create anelastomeric fibrous scaffold that allows control of fiber diameter, porosity, and rate ofdegradation. To allow cell and tissue ingrowth, hybrid scaffolds with mesenchymalstem cells (MSCs) encapsulated in a photocrosslinkable hydrogel were developed. Culturing the cellularized scaffolds in a cyclic stretch/flexure bioreactor resulted in tissue formation and confirmed the scaffold's performance under mechanical stimulation. In vivo experiments showed that the hybrid scaffold is capable of withstanding physiological pressures when implanted as a patch in the pulmonary artery. Aligned tissue formation occurred on the scaffold luminal surface without macroscopic thrombus formation. This combination of a novel, anisotropic fibrous scaffold and a tunable native‐like hydrogel for cellular encapsulation promoted formation of 3D tissue and provides a biologically functional composite scaffold for soft‐tissue engineering applications. 相似文献