首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   376篇
  免费   21篇
  国内免费   3篇
电工技术   9篇
综合类   3篇
化学工业   163篇
金属工艺   4篇
机械仪表   4篇
建筑科学   8篇
矿业工程   1篇
能源动力   14篇
轻工业   53篇
水利工程   9篇
石油天然气   3篇
无线电   17篇
一般工业技术   50篇
冶金工业   4篇
自动化技术   58篇
  2024年   1篇
  2023年   11篇
  2022年   22篇
  2021年   49篇
  2020年   22篇
  2019年   31篇
  2018年   33篇
  2017年   44篇
  2016年   22篇
  2015年   14篇
  2014年   27篇
  2013年   44篇
  2012年   18篇
  2011年   16篇
  2010年   7篇
  2009年   11篇
  2008年   11篇
  2007年   5篇
  2006年   4篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  1999年   1篇
  1993年   1篇
排序方式: 共有400条查询结果,搜索用时 15 毫秒
41.
A versatile surface decoration strategy to efficiently encapsulate water-soluble peptides is developed. By assembling peptide molecules into nanoparticles, diverse physiochemical properties of these compacted molecules are equalized to the surface properties of nanoparticles. Primarily driven by the generic electrostatic attractions, the surface of as-prepared peptide nanoparticles is decorated with charged amino acids-grafted poly(lactic-co-glycolic acid). This adsorbed polymer layer versatilely blocks the phase transfer of peptide nanoparticles by increasing their affinity to the dispersed phase solvent molecules. Attributed to the ultrahigh encapsulation efficiencies (> 96%), the peptide mass fraction inside the obtained microcomposites is higher than 48%. The plasma calcium level has been efficiently reduced for ≈3 weeks with only one single injection of salmon calcitonin-encapsulated microcomposite in osteoporotic rats. Similarly, one single injection of exenatide-encapsulated microcomposites efficiently controls the glycemic level in type 2 diabetic rats for up to 3 weeks. Overall, the developed versatile surface decoration strategy efficiently encapsulates peptides and improves their pharmacokinetic features, regardless of the molecular structure of peptide cargos.  相似文献   
42.
43.
Membranes with asymmetric wettability-Janus membranes-have recently received considerable attention for a variety of critical applications. Here, we report on a simple approach to introduce asymmetric wettability into hydrophilic porous domains. Our approach is based on the physicochemical-selective deposition of polytetrafluoroethylene (PTFE) on hydrophilic polymeric substrates. To achieve selective deposition of PTFE, we inhibit the polymerization reaction within the porous domain. We prefill the substrates with glycerol, containing a known amount of free radical inhibitor, and utilize initiated chemical vapor deposition (iCVD) for the polymerization of PTFE. We show that the glycerol/inhibitor mixture hinders the deposition of PTFE within the membrane pores. As a result, the surface of the substrates remains open and porous. The fabricated Janus membranes show stable wetting-resistant properties, evaluated through sessile drop contact angle measurements and direct contact membrane distillation (DCMD).  相似文献   
44.
Rapid growth of digital data and their security concerns increases the significance of enhancing advanced encryption techniques. Encryption is the backbone of secure communication in networks and the physical process of scrambling and permuting data in order to make them impossible to understand for unauthorized users. This paper proposes a novel audio signal encryption method, based on a mixture of three chaos functions. Due to the reversibility of the chaos functions, the decryption process is the inverse of the encryption process. This method was applied to audio signals with various sizes and the encoded messages were compared to the original ones. Simulation results and theoretical analyses show that the proposed approach offers a significant gain in terms of robustness and computational complexity.  相似文献   
45.
Woodside Energy Ltd (Woodside), Australia’s largest independent oil and gas company, operates multiple oil and gas facilities off the coast of Western Australia. These facilities require regular cargo shipments from supply vessels based in Karratha, Western Australia. In this paper, we describe a decision support model for scheduling the cargo shipments to minimize travel cost and trip duration, subject to various operational restrictions including vessel capacities, cargo demands at the facilities, time windows at the facilities, and base opening times. The model is a type of non-standard vehicle routing problem involving multiple supply vessels—a primary supply vessel that visits every facility during a round trip taking at most 1 week, and other supply vessels that are used on an ad hoc basis when the primary vessel cannot meet all cargo demands. We validate the model via test simulations using real data provided by Woodside.  相似文献   
46.
In the study, mechanical abuse tests mainly in the form of indentation were performed on the cylindrical cell, pouch cell, and prismatic cell. The mechanical force-displacement response, open circuit voltage (OCV), and temperature distribution were recorded and compared. In spherical head indentation tests of the pouch and prismatic cell and lateral indentation of the cylindrical cell, the peak force is strongly correlated with OCV drop and local temperature increase. However, in flat-end cylinder indentation tests, the internal mechanical damage is progressively developed, and the OCV drop and the temperature increase occur before the peak force. The fracture surfaces of the post-mortem samples were examined to investigate the correlation between fracture patterns and internal short circuit (ISC) behaviors (OCV and temperature distribution). Two distinct fracture patterns were observed that the in-plane fracture induced by biaxial stretching and inter-layers’ fracture induced by shearing. A strong correlation is observed between the number of shear fractures and OCV drop. An increase in the number of inter-layers’ fractures increases the rate of OCV drop. Additionally, the fracture patterns influence the ISC area and location, thereby affecting the heat generation and conduction as well as the temperature distribution.  相似文献   
47.
We model cortical bone as a composite material with hierarchical structure. At a nanostructural level, bone is composed of cross-linked collagen molecules, containing water and non-collagenous proteins in their gaps, reinforced with hydroxyapatite-like nanocrystals. Such a nanocomposite structure represents a mineralized collagen fibril, which serves as a primary building block of bone. At a sub-microstructural level (few microns), the mineralized collagen fibrils are embedded in an extrafibrillar hydroxyapatite matrix to form a single lamella, which also contains the lacunar cavities. At a microstructural level (hundreds of microns) one can distinguish two lamellar structures in the mature cortical bone: osteons, made of concentric layers of lamellae surrounding long hollow Haversian canals, and interstitial lamellae made of remnants of old osteons. At a mesostructural level (several millimeters), the cortical bone is represented by a random collection of osteons and resorption cavities in the interstitial lamellae. A macrostructural level is the whole bone level containing both the cortical (compact) and trabecular (spongy) bone types. In this paper, we predict analytically the effective elastic constants of cortical bone by modeling its elastic response at these different scales, spanning from the nanostructural to mesostructural levels, using micromechanics methods and composite materials laminate theories. The results obtained at a lower scale serve as inputs for the modeling at a higher scale. The predictions are in good agreement with the experimental data reported in literature.  相似文献   
48.
In this paper, in addition to the universal 4-port mutator circuit introduced earlier with an adder and a subtractor block, two more 4-port mutator circuits, one with plus type (CCII+) and minus type current conveyors (CCII?), the other with a plus type current conveyor (CCII+) and one minus type current follower (CF?) are presented, their port relation matrix and their realization of different memstors are tabulated. How the transfer characteristics of the ideal mutative 4-ports with respect to frequency hold is verified using their transistor level simulations. By terminating properly two ports of the mutative 4-port simulations of a memristor with three different mutators, of a meminductor and of a memcapacitor are presented and compared also with some mutators existing in the literature.  相似文献   
49.
Previous research has shown that rear seat occupant protection has decreased over model years, and front-end stiffness is a possible factor causing this trend. In this research, the effects of a change in stiffness on protection of rear seat occupants in frontal crashes were investigated. The stiffness was adjusted by using higher strength steels (DP and TRIP), or thicker metal sheets. Finite element simulations were performed, using an LS Dyna vehicle model coupled with a MADYMO dummy. Simulation results showed that an increase in stiffness, to the extent it happened in recent model years, can increase the risk of AIS3+ head injuries from 4.8% in the original model (with a stiffness of 1000 N/mm) to 24.2% in a modified model (with a stiffness of 2356 N/mm). The simulations also showed an increased risk of chest injury from 9.1% in the original model to 11.8% in the modified model. Distribution of injuries from real world accident data confirms the findings of the simulations.  相似文献   
50.
This paper proposes linear and nonlinear filters for a non-Gaussian dynamic system with an unknown nominal covariance of the output noise. The challenge of designing a suitable filter in the presence of an unknown covariance matrix is addressed by focusing on the output data set of the system. Considering that data generated from a Gaussian distribution exhibit ellipsoidal scattering, we first propose the weighted sum of norms(SON)clustering method that prioritizes nearby points, reduces distant...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号