首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   321篇
  免费   36篇
化学工业   116篇
金属工艺   2篇
机械仪表   18篇
建筑科学   16篇
矿业工程   1篇
能源动力   33篇
轻工业   59篇
无线电   8篇
一般工业技术   47篇
冶金工业   2篇
原子能技术   2篇
自动化技术   53篇
  2024年   1篇
  2023年   13篇
  2022年   18篇
  2021年   21篇
  2020年   16篇
  2019年   12篇
  2018年   19篇
  2017年   19篇
  2016年   24篇
  2015年   12篇
  2014年   16篇
  2013年   27篇
  2012年   24篇
  2011年   20篇
  2010年   23篇
  2009年   33篇
  2008年   16篇
  2007年   13篇
  2006年   14篇
  2005年   4篇
  2004年   5篇
  2003年   1篇
  2002年   1篇
  1997年   1篇
  1996年   2篇
  1994年   1篇
  1993年   1篇
排序方式: 共有357条查询结果,搜索用时 546 毫秒
41.
Pattern Analysis and Applications - Saliency detection is one of the challenging problems still tackled by image processing and computer vision research communities. Although not very numerous,...  相似文献   
42.
In this study, the colorimetric parameters (L*, a*, b*) and mass loss of heat‐treated bamboo were investigated, and the obtained results were modeled by using two methods: multiple linear regression (MLR) and artificial neural network (ANN). First, bamboo samples were exposed to heat treatment at different temperatures (110°C, 140°C, 170°C, and 200°C) and durations (15, 30, 45, 60, 75, 90, and 115 minutes) in a laboratory oven. Then, the colorimetric parameters (L*, a*, b*) and mass loss of each sample were measured after each period of heat treatment. All data were modeled by using two methods separately for each parameter and the performances of these proposed methods were compared. It was found that color change and mass loss increased with increasing temperature and duration of heat treatment. Mean absolute percentage error (MAPE) values of all obtained MLR ranged from 0.64% to 10.63%, while the all MAPE values of ANN were found to be lower than 1.5%. Based on these results, it can be said that MLR and ANN could be used to evaluate the changes on the selected properties of heat‐treated bamboo samples. On the other hand, it should be emphasized that the ANN gave more accurate results than the MLR method because of its learning capability.  相似文献   
43.
Functional properties of 2D materials like graphene can be tailored by designing their 3D structure at the Angstrom to nanometer scale. While there are routes to tailoring 3D structure at larger scales, achieving controllable sub-micron 3D deformations has remained an elusive goal since the original discovery of graphene. In this contribution, we summarize the state-of-the-art in controllable 3D structures, and present our perspective on pathways to realizing atomic-scale control. We propose an approach based on strategic application of mechanical load to precisely relocate and position topological defects that give rise to curvature and corrugation to achieve a desired 3D structure. Realizing this approach requires establishing the detailed nature of defect migration and pathways in response to applied load. From a computational perspective, the key needed advances lie in the identification of defect migration mechanisms. These needed advances define new forward and inverse problems: when a fixed stress or strain field is applied, along which pathways will defects migrate?, and vice versa. We provide a formal statement of these forward and inverse problems, and review recent methods that may enable solving them. The forward problem is addressed by determining the potential energy surface of allowable topological configurations through Monte Carlo and Gaussian process models to determine defect migration paths through dynamic programming algorithms or Monte Carlo tree search. Two inverse models are suggested, one based on genetic algorithms and another on convolutional neural networks, to predict the applied loads that induce migration and position defects to achieve desired curvature and corrugation. The realization of controllable 3D structures enables a vast design space at multiple scales to enable new functionality in flexible electronics, soft robotics, biomimetics, optics, and other application areas.  相似文献   
44.
Carbazole was electrochemically synthesized on carbon fiber microelectrodes (CFMEs) in different electrolyte and solvent media. The characterization of polycarbazole thin films formed on micron sized carbon fiber electrodes was performed by electrochemical methods (i.e., cyclic voltammetric measurements, solid state conductivity measurements (four point probe), spectrophotometric methods (ultraviolet/visible spectroscopy (UV–vis), ex situ spectroelectrochemistry, fourier transform infrared reflectance spectroscopy (FTIR-ATR)) and scanning electron microscopy (SEM). The best electrolyte and solvent in regards to yield, conductivity and charge for the electro-grafting was sodium perchlorate in acetonitrile, whose conductivity was 3.60 mS cm−1, had a yield of 89% and had a charge of 5.50C. The effects of scan rate, feed ratio, supporting electrolyte and solvent type on the electropolymerization are discussed.  相似文献   
45.
Mortars and plasters composed of a mixture of brick powder and lime have been used since ancient times due to their hydraulic properties. In this study, raw material compositions, basic physical, mineralogical, microstructural and hydraulic properties of some historic Ottoman Bath brick-lime mortars and plasters were determined by XRD, SEM-EDS, AFM, TGA and chemical analyses. The mineralogical and chemical compositions, microstructures, morphologies and pozzolanicities of the brick powders and fragments used as aggregates in the mortars and plasters were examined to find out the relationship between hydraulic properties of the mortars and the bricks. The characteristics of bricks used in the bath domes were also determined to investigate whether the brick aggregates used in mortar and plasters were prepared from these bricks. The results indicated that the mortars and plasters were hydraulic owing to the presence of crushed brick powders that have good pozzolanicity. The brick powders had high pozzolanicity because they contained high amounts of calcium-poor clay minerals in their raw materials that were fired at low temperatures. On the other hand, bricks used in the domes had poor pozzolanicity with different mineralogical and chemical compositions from bricks used in mortars and plasters. Based on the results of the analysis, it was thought that the bricks manufactured with high amounts of clays were consciously chosen in the preparation of hydraulic mortars and plasters.  相似文献   
46.
47.
Dealing with visual data is the key for environmental monitoring tasks in Wireless Multimedia Sensor Networks (WMSNs). Tasks such as object detection, recognition, and/or tracking do require extracting and using the right information from the inherently large amount of visual data. The widely accepted solution of legacy WSNs, transmitting the acquired data to a central base station for further processing, would render a WMSN totally useless because of the unacceptable use of bandwidth and energy. Therefore, we consider the in situ processing as a viable solution for WMSNs. However, processing power and memory capacity restrictions of existing multimedia sensor nodes along with their power consumption are the limiting factors for wide-spread use of in situ processing. Nevertheless, recent technological improvements and introduction of the new ARM cores encourage us to evaluate the image processing capabilities of ARM7/ARM9/ARM11 based micro-controllers for in situ processing in WMSNs. In this work, we first discussed the architectural design differences among the various ARM cores. Then we classified image processing algorithms into three categories. Then, we evaluated the performance of each microcontroller by running a set of basic image processing algorithms necessary for object detection, recognition, and/or tracking. The test results show that ARM11 runs up to 6–30 times faster than ARM9 and ARM7, respectively. Besides, ARM11 consumes up to 5–7 times less energy than ARM9 and ARM7 for the same type of operations.  相似文献   
48.
Vibrational energy transport in disordered media is of fundamental importance to several fields spanning from sustainable energy to biomedicine to thermal management. This work investigates hybrid ordered/disordered nanocomposites that consist of crystalline membranes decorated by regularly patterned disordered regions formed by ion beam irradiation. The presence of the disordered regions results in reduced thermal conductivity, rendering these systems of interest for use as nanostructured thermoelectrics and thermal device components, yet their vibrational properties are not well understood. Here, the mechanism of vibrational transport and the reason underlying the observed reduction is established in detail. The hybrid systems are found to exhibit glass‐crystal duality in vibrational transport. Lattice dynamics reveals substantial hybridization between the localized and delocalized modes, which induces avoided crossings and harmonic broadening in the dispersion. Allen/Feldman theory shows that the hybridization and avoided crossings are the dominant drivers of the reduction. Anharmonic scattering is also enhanced in the patterned nanocomposites, further contributing to the reduction. The systems exhibit features reminiscent of both nanophononic materials and locally resonant nanophononic metamaterials, but operate in a manner distinct to both. These findings indicate that such “patterned disorder” can be a promising strategy to tailor vibrational transport through hybrid nanostructures.  相似文献   
49.
Rigid polyurethane (PU) foam is used as a thermal insulating and supporting material in domestic refrigerator/freezers and it is produced by reaction injection molding (RIM) process. There is a need to improve the thermal property of rigid PU foam but this is still a challenging problem. Accordingly, this work investigates the RIM process parameters to evaluate their effects on rigid PU foam's structure and hence property. It has been found that mold temperature is a key parameter whereas curing time has negligible effect on structure of PU foam. Cell size, strut thickness, and foam density have been found very critical in controlling the thermal and mechanical properties. Upper and lower values of 30 to 32 kg/m3 density are critical to observe contribution of radiation and solid conductivity separately. Finally, PU foam with 160 µm average cell size, 16 µm strut thickness, below 10% open cell content, and 30 to 32 kg/m3 density allow obtaining better thermal insulation without significant reducing in the compressive strength. The presented work provides a better understanding of processing‐structure‐property relationship to gain knowledge on producing high‐quality rigid PU foams with improved properties. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44870.  相似文献   
50.
Turkey is a country that bears the tracks of many civilizations because of its geographic location and its characteristics that come from its deeply rooted history. So it contains historical and cultural items of value that are quite rich and can be characterized as intensely universal. Thanks to these valuable items, it has always drawn the attention of the world. Isparta is a city that houses quite a few historical, archaeological and cultural items of value in its structure. Protecting the historical buildings that carry the cultural and historical traces of a period and making a contribution to its reuse for the future of all humanity are a truth of international importance. In this connection, with this study, essential work was carried out and certain suggestions made about St. Baniya Church, which is one of the most important structures of the historically, archaeologically and culturally valuable items that make up the historical fabric of Isparta and especially, the historical and cultural potential of Isparta.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号