首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   417篇
  免费   24篇
化学工业   151篇
金属工艺   3篇
机械仪表   4篇
建筑科学   10篇
能源动力   9篇
轻工业   141篇
水利工程   6篇
石油天然气   8篇
无线电   16篇
一般工业技术   44篇
冶金工业   10篇
自动化技术   39篇
  2023年   4篇
  2022年   13篇
  2021年   21篇
  2020年   8篇
  2019年   19篇
  2018年   9篇
  2017年   13篇
  2016年   18篇
  2015年   15篇
  2014年   12篇
  2013年   38篇
  2012年   29篇
  2011年   35篇
  2010年   18篇
  2009年   20篇
  2008年   19篇
  2007年   24篇
  2006年   13篇
  2005年   13篇
  2004年   10篇
  2003年   10篇
  2002年   9篇
  2001年   6篇
  2000年   6篇
  1999年   7篇
  1998年   5篇
  1997年   5篇
  1996年   4篇
  1995年   2篇
  1994年   2篇
  1993年   8篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1988年   2篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1974年   1篇
  1972年   2篇
排序方式: 共有441条查询结果,搜索用时 0 毫秒
21.
Two ultrafiltration membranes with different geometries (spiral polymeric and tubular ceramic) but similar cutoffs were used to treat wastewater from a food industry. Hydrodynamic conditions were optimized by statistical methods as a strategy to get more accurate values of the critical parameters and then to produce higher water flux and minimization of membrane fouling. The validation of the optimization method was obtained by experimental critical flux determination at critical parameters. Membrane fluxes revealed significant differences during filtration. The polymeric membrane showed an optimal flux of 45.60 Lh?1 m?2 at 3.21 bar while operating at a stable time of 11.61 h, whereas optimal flux of the ceramic membrane was 32.43 Lh?1 m?2 at 3.98 bar for 16.03 h. Experimental critical flux values were only slightly lower than optimal fluxes for both membranes, showing the validity of the statistics models applied. Negligible osmotic pressure was found on the two membranes at critical flux parameters, indicating irreversible fouling for both cases. The polymeric membrane revealed strong fouling behavior and the ceramic membrane showed a weak form; the flux decline occurred first in the polymeric membrane, whereas the ceramic membrane exhibited high stability during the filtration operations. A high degree of purification of wastewater was obtained by this membrane at critical flux conditions.  相似文献   
22.
Stress urinary incontinence and pelvic organ prolapse represent important conditions affecting adult women’s health. Lately, the properties and performance of the polymer materials used in the treatment of pelvic organ prolapse have been improved by modulating from their formula. Materials investigated in our study are polypropylene meshes used by clinicians in surgical treatment of urinary incontinence and utero-vaginal prolapse. In order to make a comparative analysis, we confronted the structure and surface morphology of native synthetic polypropylene meshes with explanted fragments from the same mesh type after clinical use. FTIR investigations revealed little change in structure after implantation, somehow insignificant. Scanning electron microscopy (SEM) demonstrates modification in surface morphology even just by passing through the transobturator passage, whereas after implantation the surface deteriorates. SEM on explanted meshes proves the encapsulation process of the mesh to be more similar to a foreign body reaction rather than to the adhesion and integration of the synthetic mesh into the organism. Histological analysis of the surrounding tissues near explanted mesh was made in some relevant clinical cases, because the tissue response is an important factor in order to evaluate the tissue adhesion at the polypropylene mesh surface. Based on our experiments and clinical experience we’ve designed an adhesion score. It applies to meshes used in pelvic organ prolapse surgery measuring the following important factors: tenacity, extent of adhesion, macroscopic and microscopic aspects and ease of dissection from surrounding tissues.  相似文献   
23.
This paper compares the modification mechanism provided by ethylene‐octene (EO) copolymer to that of ethylene‐propylene‐diene terpolymer (EPDM) rubber. Within the limits of this study, the highest impact strength was achieved at 30–40% rubber content, regardless of the rubber type. An increase in rubber melt viscosity resulted in overall greater impact strength. At the optimum concentration, the high‐viscosity (MFI = 1 to 5) EO rubber provided modification mainly via a crazing mechanism, while the EPDM rubber functioned by energy dissipation through the three‐dimensional network structure formed with the polypropylene matrix. This paper also discusses the effects of the processing conditions on the physical properties of PP/EPR copolymer. An increase in processing temperature and screw speed resulted in a reduced number of discrete rubber particles and nearly no or very slight increase in impact strength, but a very significant reduction in tensile strength and tensile modulus.  相似文献   
24.
Triple Negative Breast Cancer (TNBC) is a very aggressive tumor subtype, which still lacks specific markers for an effective targeted therapy. Despite the common feature of negativity for the three most relevant receptors (ER, PgR and HER2), TNBC is a very heterogeneous disease where different subgroups can be recognized, and both gene and microRNA profiling studies have recently been carried out to dissect the different molecular entities. Moreover, several microRNAs playing a crucial role in triple negative breast cancer biology have been identified, providing the experimental basis for a possible therapeutic application. Indeed, the causal involvement of microRNAs in breast cancer and the possible use of these small noncoding RNA molecules as biomarkers has been extensively studied with promising results. Their application as therapeutic tools might represent an innovative approach, especially for a tumor subgroup still lacking an efficient and specific therapy such as TNBC. In this review, we summarize our knowledge on the most important microRNAs described in TNBC.  相似文献   
25.
Electrodeposition of Co-Ni and Co-Ni-Cu alloys was performed in a sulphate-citrate medium. Experimental electrodeposition parameters (pH, cobalt(II), nickel(II) and citrate concentrations) were varied in order to analyse their influence on the deposition. Anomalous Co-Ni codeposition occured in the citrate medium. High [Ni(II)]/[Co(II)] ratios (above 5) were suitable for the preparation of homogeneous magnetic Co-rich Co-Ni deposits of hexagonal close-packed (hcp) structure or face centred cubic (fcc) structure as a function of the deposition potential.The presence of very low copper(II) concentrations (<10−2 mol dm−3) in the nickel-cobalt bath makes it possible to incorporate copper in the deposits in amounts ranging from 5 to 60% Cu, although uniform deposits are obtained only for low copper percentages. These ternary deposits are solid solutions with fcc structure and magnetic behaviour both dependent on the deposition potential.  相似文献   
26.
Cellular fusion is a key process in many fields ranging from historical gene mapping studies and monoclonal antibody production, through to cell reprogramming. Traditional methodologies for cell fusion rely on the random pairing of different cell types and generally result in low and variable fusion efficiencies. These approaches become particularly limiting where substantial numbers of bespoke one‐to‐one fusions are required, for example, for in‐depth studies of nuclear reprogramming mechanisms. In recent years, microfluidic technologies have proven valuable in creating platforms where the manipulation of single cells is highly efficient, rapid and controllable. These technologies also allow the integration of different experimental steps and characterisation processes into a single platform. Although the application of microfluidic methodologies to cell fusion studies is promising, current technologies that rely on static trapping are limited both in terms of the overall number of fused cells produced and their experimental accessibility. Here we review some of the most exciting breakthroughs in core microfluidic technologies that will allow the creation of integrated platforms for controlled cell fusion at high throughput. © 2015 Society of Chemical Industry  相似文献   
27.
Loss-of-function mutations of the CFTR gene cause cystic fibrosis (CF) through a variety of molecular mechanisms involving altered expression, trafficking, and/or activity of the CFTR chloride channel. The most frequent mutation among CF patients, F508del, causes multiple defects that can be, however, overcome by a combination of three pharmacological agents that improve CFTR channel trafficking and gating, namely, elexacaftor, tezacaftor, and ivacaftor. This study was prompted by the evidence of two CF patients, compound heterozygous for F508del and a minimal function variant, who failed to obtain any beneficial effects following treatment with the triple drug combination. Functional studies on nasal epithelia generated in vitro from these patients confirmed the lack of response to pharmacological treatment. Molecular characterization highlighted the presence of an additional amino acid substitution, L467F, in cis with the F508del variant, demonstrating that both patients were carriers of a complex allele. Functional and biochemical assays in heterologous expression systems demonstrated that the double mutant L467F-F508del has a severely reduced activity, with negligible rescue by CFTR modulators. While further studies are needed to investigate the actual prevalence of the L467F-F508del allele, our results suggest that this complex allele should be taken into consideration as plausible cause in CF patients not responding to CFTR modulators.  相似文献   
28.
Transplantation of various types of stem cells as a possible therapy for stroke has been tested for years, and the results are promising. Recent investigations have shown that the administration of the conditioned media obtained after stem cell cultivation can also be effective in the therapy of the central nervous system pathology (hypothesis of their paracrine action). The aim of this study was to evaluate the therapeutic effects of the conditioned medium of hiPSC-derived glial and neuronal progenitor cells in the rat middle cerebral artery occlusion model of the ischemic stroke. Secretory activity of the cultured neuronal and glial progenitor cells was evaluated by proteomic and immunosorbent-based approaches. Therapeutic effects were assessed by overall survival, neurologic deficit and infarct volume dynamics, as well as by the end-point values of the apoptosis- and inflammation-related gene expression levels, the extent of microglia/macrophage infiltration and the numbers of formed blood vessels in the affected area of the brain. As a result, 31% of the protein species discovered in glial progenitor cells-conditioned medium and 45% in neuronal progenitor cells-conditioned medium were cell type specific. The glial progenitor cell-conditioned media showed a higher content of neurotrophins (BDNF, GDNF, CNTF and NGF). We showed that intra-arterial administration of glial progenitor cells-conditioned medium promoted a faster decrease in neurological deficit compared to the control group, reduced microglia/macrophage infiltration, reduced expression of pro-apoptotic gene Bax and pro-inflammatory cytokine gene Tnf, increased expression of anti-inflammatory cytokine genes (Il4, Il10, Il13) and promoted the formation of blood vessels within the damaged area. None of these effects were exerted by the neuronal progenitor cell-conditioned media. The results indicate pronounced cytoprotective, anti-inflammatory and angiogenic properties of soluble factors secreted by glial progenitor cells.  相似文献   
29.
The mechanisms underlying the transport of leptin into the brain are still largely unclear. While the leptin receptor has been implicated in the transport process, recent evidence has suggested an additional role of LRP2 (megalin). To evaluate the function of LRP2 for leptin transport across the blood-brain barrier (BBB), we developed a novel leptin-luciferase fusion protein (pLG), which stimulated leptin signaling and was transported in an in vitro BBB model based on porcine endothelial cells. The LRP inhibitor RAP did not affect leptin transport, arguing against a role of LRP2. In line with this, the selective deletion of LRP2 in brain endothelial cells and epithelial cells of the choroid plexus did not influence bodyweight, body composition, food intake, or energy expenditure of mice. These findings suggest that LRP2 at the BBB is not involved in the transport of leptin into the brain, nor in the development of obesity as has previously been described.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号