首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   499篇
  免费   41篇
电工技术   9篇
化学工业   250篇
金属工艺   6篇
机械仪表   7篇
建筑科学   13篇
能源动力   30篇
轻工业   94篇
水利工程   2篇
石油天然气   1篇
无线电   12篇
一般工业技术   47篇
冶金工业   34篇
原子能技术   3篇
自动化技术   32篇
  2023年   9篇
  2022年   68篇
  2021年   55篇
  2020年   20篇
  2019年   9篇
  2018年   19篇
  2017年   28篇
  2016年   20篇
  2015年   17篇
  2014年   16篇
  2013年   36篇
  2012年   31篇
  2011年   33篇
  2010年   15篇
  2009年   24篇
  2008年   26篇
  2007年   15篇
  2006年   15篇
  2005年   2篇
  2004年   6篇
  2003年   6篇
  2002年   4篇
  2001年   1篇
  2000年   6篇
  1999年   1篇
  1998年   9篇
  1997年   8篇
  1996年   6篇
  1995年   2篇
  1994年   5篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1985年   7篇
  1984年   2篇
  1983年   5篇
  1982年   1篇
  1981年   3篇
  1980年   1篇
  1976年   1篇
  1968年   1篇
排序方式: 共有540条查询结果,搜索用时 15 毫秒
71.
The thermal performances of nanocomposite layers formed by Single-walled Carbon Nanotubes (SWCNT) dispersed in 2 different kind of polydimethyl-siloxane (PDMSO) matrices has been investigated by measuring the thermal resistance under conditions similar to the ones used for thermal management in microelectronics. A series of nanocomposite samples with thickness in the range 25 microm(-1) cm have been tested. The nanocomposites were prepared varying the amounts of nanotubes embedded in the matrix (from 0.1 to 5%w). In some cases also microsized graphites were mixed to the nanotube's fillers. For 25 micron thick layers, the thermal resistance of the neat silicone specimen can be reduced of 54% with the addition of 2%w carbon nanotubes. The variation of thermal conductivity as a function of the SWCNT's loading is reported and discussed. Furthermore the dispersion's effects of the nanotubes in the layers and the effects on the realization of a net-like system have been investigated.  相似文献   
72.
73.
Sheep milk has a high nutritional value and high concentrations of proteins, fats, minerals, and vitamins, as compared to the milks of other domestic species. The physicochemical and nutritional characteristics of sheep milk can be advantageous for the manufacture of products containing prebiotic ingredients and/or probiotic bacteria, which are major categories in the functional food market. Following this technological trend, this review will address the characteristics and advantages of sheep milk as a potentially functional food, as well as the development of sheep milk dairy products containing prebiotics and/or probiotics.  相似文献   
74.
This study aimed to investigate the effect of saliva on Streptococcus mitis free cells and on S. mitis/human gingival fibroblasts (HGFs) co-culture model, in presence of 2-hydroxyethyl-methacrylate (HEMA). The bacterial aggregation both in the planktonic phase and on HGFs, as well as the apoptotic and necrotic eukaryotic cells amount were analyzed, in presence of saliva and/or HEMA. The aggregation test revealed a significant saliva aggregation effect on S. mitis strains compared to the untreated sample. No significant differences were recorded in the amount of culturable bacteria in all studied conditions; however, from microscopy images, the saliva/HEMA combining effect induced a significant bacterial aggregation and adhesion on HGFs. HEMA treatment decreased viable eukaryotic cell number with a parallel increment of necrotic cells, but when saliva was added to the co-culture, the viable cells percentage increased to a value comparable to the control sample.  相似文献   
75.
SPEEK has been widely considered as a promising alternative to Nafion® membrane for PEMFC. However, a conflict between high degree of sulfonation (DS) and poor mechanical strength needs to be resolved prior to wide application. In this work, such an effort was made by double strategies: thermal crosslinking and adding nanodiamond into high DS SPEEK matrix. The obtained sample was characterized by XRD, high resolution TGA and dynamic mechanical analysis (DMA). Small part of –SO3H groups within SPEEK matrix participated in the crosslinking process by forming –SO2– bridge bond, while the rest large part of –SO3H groups still contributed to the proton transport. Mechanical and thermal stability of SPEEK membrane were modified by crosslinking-induced three-dimensional (3D) networks and interactions of SPEEK with nanodiamond. In addition, the water uptakes of composite membranes were also slightly improved possibly due to the capillary condensation in nanodiamond particles.  相似文献   
76.
77.
One of the great challenges of medicinal chemistry is to create novel, effective, chemotherapeutic agents that show specificity for cancer cells combined with low systemic toxicity. A novel idea is to target the enzymes of the NAD biosynthesis and recycling pathways given that cancer cells display a higher NAD turnover rate than healthy cells. To this end, the compound FK866 (APO866; (E)-N-[4-(1-benzoylpiperidin-4-yl) butyl]-3-(pyridin-3-yl) acrylamide), which blocks nicotinamide phosphoribosyltransferase (NMPRTase) has entered clinical trials as a potential chemotherapeutic agent. Here we report the synthesis of analogues of FK866 synthesized by click chemistry.  相似文献   
78.
Shrinkage reducing admixtures (SRA) have been developed to combat shrinkage cracking in concrete elements. While SRA has been shown to have significant benefits in reducing the magnitude of drying and autogenous shrinkage, it has been reported that SRA may cause a negative side effect as it reduces the rate of cement hydration and strength development in concrete. To examine the influence of SRA on cement hydration, this study explores the interactions between SRA and cement paste's pore solution. It is described that SRA is mainly composed of amphiphilic (i.e., surfactant) molecules that when added to an aqueous solution, accumulate at the solution-air interface and can significantly reduce the interfacial tension. However, these surfactants can also self-aggregate in the bulk solution (i.e., micellation) and this may limit the surface tension reduction capacity of SRA. In synthetic pore solutions, SRA is observed to form an oil-water-surfactant emulsion that may or may not be stable. Specifically, at concentrations above a critical threshold, the mixture of SRA and pore fluid is unstable and can separate into two distinct phases (an SRA-rich phase and an SRA-dilute phase). Further, chemical analysis of extracted pore solutions shows that addition of SRA to the mixing water depresses the dissolution of alkalis in the pore fluid. This results in a pore fluid with lower alkalinity which causes a reduction in the rate of cement hydration. This may explain why concrete containing SRA shows a delayed setting and a slower strength development.  相似文献   
79.
The detonation nanodiamond is a novel versatile nanomaterial with tunable properties and surface chemistry. In this work, we report on a template-free method to synthesize polyaniline based nanocomposite fibers during a chemical oxidative precipitation polymerization where the cooperative interactions between nanodiamond and polyaniline nucleates trigger the final morphology of the nanocomposite. FE–SEM and TEM observations evidence the prominent growth of fibril-like structures assembled in 2-D networks of tightly woven, partially oriented fibers. Optical and Raman spectroscopy and X-ray diffraction analyses reveal that the polymer chains are in a protonated emeraldine form and organize themselves in a highly ordered 3-D spatial arrangement. Conductivity measurements performed on isolated fibers by a conductive tip of an AFM apparatus highlight that the diamond filler does not affect the conductive properties of the polyaniline matrix while increases the thermal stability of the polymer as confirmed by TGA studies.  相似文献   
80.
The first evidence of out‐of‐plane resonances in hybrid metallo‐dielectric quasi‐crystal (QC) nanostructures composed of metal‐backed aperiodically patterned low‐contrast dielectric layers is reported. Via experimental measurements and full‐wave numerical simulations, these resonant phenomena are characterized with specific reference to the Ammann‐Beenker (quasi‐ periodic, octagonal) tiling lattice geometry and the underlying physics is investigated. In particular, it is shown that, by comparison with standard periodic structures, a moderately richer spectrum of resonant modes may be excited, due to the easier achievement of phase‐matching conditions endowed by its denser Bragg spectrum. Such modes are characterized by a distinctive plasmonic or photonic behavior, discriminated by their field distribution and dependence on the metal film thickness. Moreover, the response is accurately predicted via computationally affordable periodic‐approximant‐based numerical modeling. The enhanced capability of QCs to control number, spectral position, and mode distribution of hybrid resonances may be exploited in a variety of possible applications. To assess this aspect, label‐free biosensing is studied via characterization of the surface sensitivity of the proposed structures with respect to local refractive index changes. Moreover, it is also shown that the resonance‐engineering capabilities of QC nanostructures may be effectively exploited in order to enhance the absorption efficiency of thin‐film solar cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号