首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   499篇
  免费   31篇
  国内免费   3篇
电工技术   3篇
综合类   1篇
化学工业   105篇
金属工艺   18篇
机械仪表   22篇
建筑科学   23篇
能源动力   40篇
轻工业   45篇
水利工程   3篇
石油天然气   1篇
无线电   47篇
一般工业技术   88篇
冶金工业   41篇
原子能技术   6篇
自动化技术   90篇
  2024年   4篇
  2023年   6篇
  2022年   18篇
  2021年   32篇
  2020年   31篇
  2019年   29篇
  2018年   37篇
  2017年   26篇
  2016年   35篇
  2015年   11篇
  2014年   32篇
  2013年   60篇
  2012年   23篇
  2011年   43篇
  2010年   25篇
  2009年   27篇
  2008年   23篇
  2007年   9篇
  2006年   12篇
  2005年   10篇
  2004年   2篇
  2003年   5篇
  2002年   5篇
  2000年   2篇
  1998年   2篇
  1997年   2篇
  1996年   5篇
  1995年   1篇
  1994年   2篇
  1992年   2篇
  1990年   2篇
  1988年   2篇
  1985年   2篇
  1983年   1篇
  1982年   1篇
  1979年   1篇
  1977年   2篇
  1975年   1篇
排序方式: 共有533条查询结果,搜索用时 0 毫秒
531.
Styrene/divinyl benzene‐based macroporous polyHIPE composites were prepared from water‐in‐oil (w/o) high internal phase emulsion (HIPE) templates by using both organo‐modified montmorillonite (MMT) and a nonionic surfactant. For this purpose, Spirulina (Sp) microalgae was immobilized onto Na‐MMT clay by using two different modification techniques. They are based on conventional adsorption in solution (SOL) and novel cryoscopic expansion (C‐XP) assisted adsorption. Highly porous nanocomposites were prepared by using different percentages of modified nanoclays (SpSOLM/SpXPM) with a constant internal phase volume of 80%. The emulsion stability, morphology, and dye adsorption capacities were discussed by paying attention to nanoclay immobilization techniques, clay loading degree and surfactant concentration. The critical amount of nonionic surfactant for formation of the stable neat HIPE template was found to be only 5 vol% with respect to volume of organic phase. However, this amount was further reduced to much less value (2 vol%) with Sp immobilized nanoclays via help of cooperative interactions of Sp and MMT nanoclay. The C‐XP assisted modification of clay led to nanocomposites with 580% higher adsorption capacity for cationic dye. This remarkable benefit was obtained with even 0.5% clay loading and only 2% surfactant concentration. POLYM. ENG. SCI., 58:1229–1240, 2018. © 2017 Society of Plastics Engineers  相似文献   
532.
This study is focused on investigating the role of bismuth oxide (Bi2O3) nanoparticles to improve structural, optical, electrical, and mechanical properties of low-density polyethylene (LDPE). For this purpose, Bi2O3 nanoparticles were synthesized by using the solvothermal method and examined by transmission electron microscopes (TEM), x-ray diffraction (XRD), Fourier transformed infrared (FTIR) spectroscopy, and ultraviolet–visible (UV–Vis) light absorption methods. LDPE-based nanocomposites were prepared by changing the nanoparticle additive ratio in the composite from 0% to 2% by weight. The composites were analyzed in the context of their FTIR spectra, atomic force microscope (AFM) images, UV–Vis light absorption spectra, stress–strain curves, and energy storage abilities. While the AFM findings indicate a smoother surface for the composites, the optical band gap analysis reveals a slightly decreased direct optical band gap energy. The analyses based on dielectric spectroscopy also highlight the LDPE/0.5% n-Bi2O3 composite in terms of the best energy storage capability. Additionally, the highest Young's modulus, toughness, stress at break, and percentage of strain at break were also recorded for the LDPE/0.5% n-Bi2O3 composite. In this context, the LDPE/0.5% n-Bi2O3 composite with improved dielectric and mechanical properties can be suggested as a new promising LDPE-based nanocomposite with better properties for industrial purposes.  相似文献   
533.
The aim of this study is to analyze the raw data collected from a fruit juice–alcohol mixture (a fruit juice–alcohol mixture and a fruit juice–multiple alcohol mixture) and the Halal authentication of a fruit juice–alcohol mixture with electronic nose. Machine learning techniques such as naïve Bayesian classifier, K‐nearest neighbors (K‐NN), linear discriminant analysis (LDA), decision tree, artificial neural network (ANN), and support vector machine (SVM) were used to classify the feature of these collected raw data. There are three types of classification: the first one is a fruit juice and an alcohol mixture type; the second is a fruit juice and multiple alcohol mixture types, and the third is a Halal authentication of a fruit juice and alcohol mixture. We aimed at making cocktails with more successful results on the first two types of classification in the work. Also, we focused on Halal authentication of fruit juice–alcohol mixture in the third classification. © 2016 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号