首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   177篇
  免费   16篇
  国内免费   5篇
电工技术   1篇
综合类   8篇
化学工业   54篇
金属工艺   7篇
机械仪表   6篇
建筑科学   5篇
能源动力   16篇
轻工业   9篇
水利工程   2篇
石油天然气   12篇
无线电   18篇
一般工业技术   36篇
冶金工业   7篇
原子能技术   1篇
自动化技术   16篇
  2023年   6篇
  2022年   8篇
  2021年   13篇
  2020年   9篇
  2019年   15篇
  2018年   15篇
  2017年   10篇
  2016年   21篇
  2015年   5篇
  2014年   9篇
  2013年   9篇
  2012年   9篇
  2011年   12篇
  2010年   10篇
  2009年   4篇
  2008年   2篇
  2007年   3篇
  2006年   1篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   3篇
  1999年   2篇
  1998年   3篇
  1997年   2篇
  1996年   5篇
  1995年   1篇
  1994年   4篇
  1991年   1篇
  1990年   2篇
  1989年   4篇
  1988年   1篇
  1986年   1篇
  1984年   3篇
  1972年   1篇
排序方式: 共有198条查询结果,搜索用时 15 毫秒
191.
In this study nanocrystalline hydroxyapatite (nHA) was synthesized and characterized by means of FT-IR, XRD and TEM techniques and a series of proton exchange membranes based on Nafion® and nHA were fabricated via solvent casting method. Thermogravimetric analysis confirmed thermal stability enhancement of the Nafion® nanocomposite due to the presence of nHA nanopowder. SAXS and TEM analyses confirmed the incorporation of nHA into ionic phase of Nafion®. Furthermore, the incorporation of elliptical nHA into the Nafion® matrix improved proton conductivity of the resultant polyelectrolyte membrane up to 0.173 S cm−1 at 2.0 wt% of nHA loading compared to that of 0.086 S cm−1 for Nafion® 117. Also, the inclusion of nHA nanoparticles into nanocomposite membranes resulted in a significant reduction of methanol permeability and crossover in comparison with pristine Nafion® membranes. Membrane selectivity parameter of the nanocomposites at 2.0 wt% nHA was calculated and found to be 106,800 S s cm−3, which is more than two times than that of Nafion® 117. Direct methanol fuel cell tests revealed that Nafion®/nHA nanocomposite membranes were able to provide higher fuel cell efficiency and also better electrochemical performance in both low and high concentrations of methanol feed. Thus, the current study shows that nHA enhances the functionality of Nafion® as fuel cell membranes.  相似文献   
192.
研究复合铸造工艺参数对A356-SiCp复合材料显微组织和拉伸性能的影响。在590、600和610°C的温度条件下,分别以200、400和600 r/min的速度对样品进行半固态搅拌,搅拌时间分别为10、20和30 min。分析SiC颗粒在基体材料中的分布、样品的孔隙率和拉伸性能。结果表明,通过延长搅拌时间和降低搅拌温度,可以提升颗粒分布的均匀性;然而,随着搅拌速度的提高,颗粒分布的均匀性呈先上升后下降的趋势。同时还发现,通过增大所有的工艺参数,孔隙率得到了提高。从抗拉特性来看,最佳的搅拌速度、温度和时间分别为400 r/min、590°C和30 min。与孔隙率相比,增强相分布的均匀性对拉伸性能的影响更明显。  相似文献   
193.
The problem of interactive buckling and post‐buckling of intermediate length thin‐walled columns built of laminated plate elements subjected to compressive load has been proposed and solved analytically. Pultrusion columns have wide‐range applications in high‐rise building due to their low weight and high load carrying capacity. Classic stability theory and laminate theory were implemented to prove the existence of mixed‐mode buckling in thin‐walled pultrusion columns. Interactive stability modes can result in lower loading capacity of most compressive members and affects their post‐buckling behaviour in major proportions. Interactive buckling load analysis has been performed by means of a simplified theoretical model and verified by means of numerical analysis. The calculations were carried out for commonly used square section thin‐walled composite columns dimensions. The post‐buckling performance of selected sections has been investigated and an optimum layup configuration criterion for each section has been extracted according to pre‐ and post‐critical behaviour. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
194.
Recently, cloud computing has been recognized as an effective paradigm for offering an on-demand platform, software services, and an efficient infrastructure to cloud clients. Due to the exponential growth of cloud tasks and the rapidly increasing number of cloud users, scheduling and balancing these tasks among involved heterogeneous virtual machines becomes an Non-deterministic Polynomial hard (NP-hard) optimization problem considering significant constraints, such as high rate of resource usage, low scheduling time, and low implementation cost. Therefore, various meta-heuristic algorithms have been widely used to tackle the issue. The current paper proposes a novel load balancing mechanism using the ant colony optimization and artificial bee colony algorithms, called LBAA, which aims to balance the load division among systems in data centers. The simulation outcomes confirm that our algorithm outperforms previous works regarding response time, imbalance degree, makespan, and resource utilization up to 25%, 15%, 12%, and 10%, respectively.  相似文献   
195.
The present study investigated the wear and electrochemical behaviors of CrN/AlCrN multilayered coatings post-annealed at 300, 450, and 600°C temperatures. The cathodic arc evaporation technique has been utilized to deposit the coatings. Scanning electron microscope, field emission SEM, energy-dispersive X-ray, grazing incidence X-ray diffraction, and Rockwell-C indenter methods were used to characterize the coatings and to investigate the interdiffusion between the multilayered CrN/AlCrN and the H13 base metal. The results showed that the sharp interface of the CrN and AlCrN layers was blurred by the annealing process supporting the interdiffusion of the layers. The reciprocating wear test and the microhardness tester were used to evaluate the coatings’ mechanical behavior. The hardness and roughness of the coatings were increased by increasing the post-annealing temperature. The smallest wear rates were observed for the samples treated at 300 and 450°C, which were approximately 17 times and 12 times smaller than the wear rate of the sample annealed at 600°C. Electrochemical testing was used to study the corrosion behavior of the coatings. The results showed that by increasing annealing temperature, corrosion resistances of the coatings are improved. As a result, the corrosion current density of the 600°C annealed coating was approximately 434 times smaller than as-deposited coatings.  相似文献   
196.
Mohammadian  Sasan  Babazadeh  Farshad  Abedi  Kambiz 《SILICON》2023,15(5):2287-2295
Silicon - This study aimed at designing a tunable ring resonator based on Micro-Electromechanical Systems (MOEMS) for exploring optical application. Optical Ring Resonator (ORR) represents central...  相似文献   
197.
High voltage direct current (HVDC) systems are efcient solutions for the integration of large-scale renewable energy sources with the main power grids. The rapid development of the HVDC grid has resulted in a growing interest in DC circuit breakers (DCCBs). A fast and reliable circuit breaker is a necessary requirement in the development of large scale HVDC grids. This paper provides a comprehensive review and survey of the HVDC CBs and discusses potential research directions. Operational principles and the main features of various DCCBs are described and their merits and shortcomings are also highlighted.  相似文献   
198.
Redox flow batteries (RFBs) hold great potential for large-scale, extended-duration stationary energy storage. Here, a novel computationally cost-effective hydraulic-electrical analogous model (HEAM) for fluid flow in RFBs is developed. The HEAM demonstrated that lowering the electrode compression and enhancing the channel area lowers the pump power loss independent of the flow fields and electrodes. Additionally, the HEAM helped elucidate the deficiencies of flow distribution in interdigitated flow fields (IFFs) and suggested designing wider manifolds and/or shorter channels improve the flow distribution. Moreover, the HEAM suggested shallower and/or wider channels, and more permeable electrodes enhance the flow penetration rate above the channels. Finally, the HEAM showed that the average penetration depth in the electrode above the ribs (hpen) was the critical parameter in the fluid-flow modeling of IFFs and was inversely proportional to the permeability. Hence, there is a trade-off between the pump power loss and hpen when configuring electrode permeability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号