Cyanate ester resin-based composite materials have been proposed as potential encapsulants for high-temperature applications. The objective of this study is to develop a cyanate ester-based encapsulant, which can also serve as a flip-chip underfill as well as for traditional encapsulation. Two different materials, quartz and alumina fillers, have been studied. The impact of shapes and sizes of the fillers on the overall thermomechanical properties has been investigated. The adhesion strengths of the materials to the ceramic substrate, Kovar lid, and silicon die have also been characterized. The modulus of the resin and the shape of the fillers play a pivotal role in minimizing thermal stress, generated by coefficient of thermal expansion mismatches. Smaller filler particles were found to have better adhesion to the cyanate ester resin. The high-temperature performance of the cyanate ester-based encapsulants was evaluated by thermal aging at 300°C for up to 500 h. 相似文献
System-on-package (SOP) is a viable alternative to system-on-chip (SOC) for meeting the rigorous requirements of today's mixed-signal system integration. Thermal integrity is arguably the most crucial issue in three-dimensional (3-D) SOP due to the compact nature of the 3-D integration. In addition, the power supply noise issue becomes more serious as the supply voltage continues to decrease while the number of active devices consuming power increases. We propose a 3-D module and decap (decoupling capacitance) placement algorithm that evenly distributes the thermal profile and reduces the power supply noise. In addition, we allocate white spaces around the modules that require decaps to suppress the power supply noise while minimizing the area overhead. In our experimentation, we achieve improvements in both maximum temperature and decap amount with only small increase in area, wirelength, and runtime. 相似文献
Research on semiconductor photocatalysts for the conversion of solar energy into chemical fuels has been at the forefront of renewable energy technologies. Water splitting to produce H2 and CO2 reduction to hydrocarbons are the two prominent approaches. A lesser‐known process, the conversion of solar energy into the versatile high‐energy product H2O2 via reduction of O2 has been proposed as an alternative concept. Semiconductor photoelectrodes for the direct photosynthesis of H2O2 from O2 have not been applied up to now. Photoelectrocatalytic oxygen reduction to peroxides in aqueous electrolytes by hydrogen‐bonded organic semiconductor is observed photoelectrodes. These materials have been found to be remarkably stable operating in a photoelectrochemical cell converting light into H2O2 under constant illumination for at least several days, functioning in a pH range from 1 to 12. This is the first report of a semiconductor photoelectrode for H2O2 production, with catalytic performance exceeding prior reports on photocatalysts by one to two orders of magnitude in terms of peroxide yield/catalyst amount/time. The combination of a strongly reducing conduction band energy level with stability in aqueous electrolytes opens new avenues for this widely available materials class in the field of photo(electro) catalysis. 相似文献
This paper reports insights about energy savings in buildings dedicated to tertiary activity. The goal is to employ as much as possible natural light flows to minimize the artificial light source consumption. Although the solar energy is power-efficient to light and heat a room, this natural source remains complex to manage and can generate inconveniences related to occupants visual comfort. The authors propose a global solution to deal with visual comfort by controlling the daylight contribution to the indoor light atmosphere. This control structure is based on the use of an innovative sensor of light conditions and it was implemented within an experimental room equipped with classic Venetian blinds. This paper focuses on the control laws to apply in order to meet visual needs for current tasks performed in offices. 相似文献
Recent advances in pervasive computing and wireless technologies have enabled novel multicast services anywhere, anytime, such as mobile auctions, advertisement, and e-coupons. Routing/multicast protocols in large-scale ad-hoc networks adopt two-tier infrastructures to accommodate the effectiveness of the flooding scheme and the efficiency of the tree-based scheme. In these protocols, hosts with a maximal number of neighbors are chosen as backbone hosts (BHs) to forward packets. Most likely, these BHs will be traffic concentrations or bottlenecks of the network and spend significant amount of time forwarding packets. In this paper, a distinct strategy is proposed for constructing a two-tier infrastructure in a large-scale ad-hoc network. Hosts with a minimal number of hops to the other hosts rather than those with a maximal number of neighbors will be adopted as BHs in order to obtain shorter multicast routes. The problem of determining BHs can be formulated with linear programming. BHs thus found have the advantages of shorter relay and less concentration. Besides, BHs are selected on-demand and can be globally reused for different multicast groups without flooding again. Simulation results show that the proposed protocol has shorter transmission latency, fewer control/data packets and higher receiving data packet ratios than other existing multicast protocols. Besides, the two-tier infrastructure constructed by the proposed protocol is more stable. 相似文献
The development of a photo‐responsive micellar system capable of triggering cell death is reported. Precursors of the micelles are synthesized by connecting a lipophilic chain to a hydrophilic polyethylene glycol via a photo‐labile nitrobenzyl group. The resulting amphiphilic units are self‐assembled in water forming 12 nm micelles that are readily internalized into cells. Upon photo‐irradiation, micelles undergo cleavage and yield a cytotoxic nitrosobenzaldehyde derivative, which significantly inhibits the proliferation of MDA‐MB‐231 cells under standard in vitro conditions. 相似文献
Intramolecular donor–acceptor structures prepared by covalently binding conjugated octylphenanthrenyl‐imidazole moieties onto the side chains of regioregular poly(3‐hexylthiophene)s exhibit lowered bandgaps and enhanced electron transfer compared to the parent polymer, e.g., conjugation of 90 mol% octylphenanthrenyl‐imidazole moieties onto poly(3‐hexylthiophene) chains reduces the optical bandgap from 1.91 to 1.80 eV, and the electron transfer probability is at least twice as high as that of pure poly(3‐hexylthiophene) when blended with [6,6]‐phenyl‐C61‐butyric acid methyl ester. The lowered bandgap and the fast charge transfer both contribute to much higher external quantum efficiencies, thus much higher short‐circuit current densities for copolymers presenting octylphenanthrenyl‐imidazole moieties, relative to those of pure poly(3‐hexylthiophene)s. The short‐circuit current density of a device prepared from a copolymer presenting 90 mol% octylphenanthrenyl‐imidazole moieties is 13.7 mA · cm?2 which is an increase of 65% compared to the 8.3 mA · cm?2 observable for a device containing pure poly(3‐hexylthiophene). The maximum power conversion efficiency of this particular copolymer is 3.45% which suggest that such copolymers are promising polymeric photovoltaic materials. 相似文献
Indoor localization using a Received Signal Strength Indicator (namely, RSSI localization) has been considered a poor measurement for target tracking. The main cause of this inaccurate measurement is that RSSI’s behaviors heavily depend on environmental factors. That is, one significant challenge to localization using RSSI is that the strength of a signal varies with the environment confounding wireless communications power and signal control. In this paper, we propose Circular RSSI And Multi-Sector tracking (CRAMStrack), a novel approach to reducing the uncertainty of RSSI localization by modifying the relationship of RSSI-to-Distance (RtD), based on the sectors of a circle and the position of the tracked target. Traditional RSSI tracking uses one uniform RtD relationship to locate a target whereas CRAMStrack utilizes multiple RtD responses for each wireless sensor. The paper examines CRAMStrack’s tracking ability in a Euclidean space with estimation techniques. Real-world experiments demonstrate CRAMStrack in a testbed environment to locate targets in both stationary, linear, and non-linear movement patterns with single and group-based formations. The track accuracy was about 1.46m for moving targets, while CRAMStrack had a 40% reduction in Root Mean Square Error (RMSE) over Uni-RtD using neighboring sensor information.
The rapidly increasing solar conversion efficiency (PCE) of hybrid organic–inorganic perovskite (HOIP) thin-film semiconductors has triggered interest in their use for direct solar-driven water splitting to produce hydrogen. However, application of these low-cost, electronic-structure-tunable HOIP tandem photoabsorbers has been hindered by the instability of the photovoltaic-catalyst-electrolyte (PV+E) interfaces. Here, photolytic water splitting is demonstrated using an integrated configuration consisting of an HOIP/n+silicon single junction photoabsorber and a platinum (Pt) thin film catalyst. An extended electrochemical (EC) lifetime in alkaline media is achieved using titanium nitride on both sides of the Si support to eliminate formation of insulating silicon oxide, and as an effective diffusion barrier to allow high-temperature annealing of the catalyst/TiO2-protected-n+silicon interface necessary to retard electrolytic corrosion. Halide composition is examined in the (FA1-xCsx)PbI3 system with a bandgap suitable for tandem operation. A fill factor of 72.5% is achieved using a Spiro-OMeTAD-hole-transport-layer (HTL)-based HOIP/n+Si solar cell, and a high photocurrent density of −15.9 mA cm−2 (at 0 V vs reversible hydrogen electrode) is attained for the HOIP/n+Si/Pt photocathode in 1 m NaOH under simulated 1-sun illumination. While this thin-film design creates stable interfaces, the intrinsic photo- and electro-degradation of the HOIP photoabsorber remains the main obstacle for future HOIP/Si tandem PEC devices. 相似文献