首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2022篇
  免费   122篇
  国内免费   9篇
电工技术   37篇
综合类   4篇
化学工业   494篇
金属工艺   72篇
机械仪表   105篇
建筑科学   29篇
能源动力   64篇
轻工业   204篇
水利工程   6篇
无线电   383篇
一般工业技术   404篇
冶金工业   131篇
原子能技术   25篇
自动化技术   195篇
  2024年   4篇
  2023年   34篇
  2022年   57篇
  2021年   75篇
  2020年   61篇
  2019年   74篇
  2018年   64篇
  2017年   69篇
  2016年   77篇
  2015年   59篇
  2014年   87篇
  2013年   132篇
  2012年   128篇
  2011年   151篇
  2010年   111篇
  2009年   105篇
  2008年   109篇
  2007年   79篇
  2006年   83篇
  2005年   72篇
  2004年   63篇
  2003年   50篇
  2002年   61篇
  2001年   51篇
  2000年   44篇
  1999年   42篇
  1998年   60篇
  1997年   40篇
  1996年   23篇
  1995年   11篇
  1994年   10篇
  1993年   12篇
  1992年   7篇
  1991年   7篇
  1990年   7篇
  1989年   7篇
  1988年   6篇
  1987年   4篇
  1986年   6篇
  1985年   3篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1976年   3篇
  1973年   1篇
排序方式: 共有2153条查询结果,搜索用时 15 毫秒
91.
A model representing the wet-end section of a paper mill has been developed to characterize its dynamic behavior during the grade change. The model is based on the mass balance relationships written for the simplified wetend white water network. From the linearization of the dynamic model, higher-order Laplace transfer functions were obtained followed by the reduction procedure to give simple lower-order models in the form of 1st-order or 2nd-order plus dead times. The dynamic response of the wet-end is influenced both by the white water volume and by the level of wire retention. Effects of key manipulated variables such as the thick stock flow rate, the ash flow rate and the retention aid flow rate on the major controlled variables were analyzed by numerical simulations. The simple dynamic model developed in the present study can be effectively used in the operation and control. This paper is dedicated to Professor Se Ki Moon on the occasion of his retirement from Hanyang University.  相似文献   
92.
Multiwalled carbon nanotubes (MWNTs) were coated with polypyrrole (PPy) using in situ enzymatic polymerization of pyrrole catalyzed by a laccase (benzenediol:oxygen oxidoreductase, EC 1.10.3.2) from Trametes versicolor. Transmission electron microscopy revealed that the MWNTs were uniformly coated with very thin layers of PPy without any indication of globular polymer aggregate formations. The enzymatic synthesis of the MWNTs/PPy composites was quite simple being performed in a one‐pot aqueous solution (pH 4.0) under mild reaction conditions. The potential of the composites with respect to the development of energy storage devices was demonstrated by fabricating a two‐electrode coin cell capacitor (diameter 20 mm, thickness 1.6 mm) utilizing the composites as electrode materials. The capacitance of the cell was 28.0 F g?1 for the electrode material as measured by a galvanostatic charge–discharge method. The energy density and power density were 2.55 and 805 W kg?1, respectively, which were close to those of the capacitors classified as ultracapacitors. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43307.  相似文献   
93.
Cystic fibrosis transmembrane conductance regulator (CFTR) is highly expressed on the ocular epithelium and plays a pivotal role in the fluid secretion driven by chloride transport. Dry eye disease is one of the most common diseases with limited therapeutic options. In this study, a high-throughput screening was performed to identify novel CFTR activators capable of inducing chloride secretion on the ocular surface. The screening of 50,000 small molecules revealed three novel CFTR activators. Among them, the most potent CFTR activator, Cact-3 (7-(3,4-dimethoxyphenyl)-N-(4-ethoxyphenyl)pyrazolo [1,5-α]pyrimidine-2-carboxamide), produced large and sustained Cl currents in WT-CFTR-expressing FRT cells with no alterations of ANO1 and hERG channel activity. The application of Cact-3 strongly activated CFTR in the ocular epithelia of mice and it also significantly increased CFTR-mediated Cl transport in a primary cultured human conjunctival epithelium. Cact-3 strongly stimulated tear secretion in normal mice. In addition, Cact-3 significantly reduced ocular surface damage and the expression of proinflammatory factors, including interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ in an experimental mouse model of dry eye disease. These results suggest that Cact-3, a novel CFTR activator, may be a potential development candidate for the treatment of dry eye disease.  相似文献   
94.
Alginate is a linear polysaccharide that is abundant in algal biomass. A novel recombinant exolytic oligoalginate lyase from a marine bacterium, Sphingomonas sp. MJ-3, was used for the saccharification of alginate into alginate monosaccharides in order to use alginate monosaccharides as renewable carbon source. The optimal heterologous expression condition for the MJ-3 oligoalginate lyase was determined, and the effects of saccharification reaction conditions were evaluated. Unsaturated monosaccharides up to 3.3 mg/ml were successfully prepared from 1% (w/v) alginate by using the recombinant oligoalginate lyase of Sphingomonas sp. MJ-3.  相似文献   
95.
Chemical-looping combustion (CLC) of syngas has a potential to generate power economically with achieving the inherent carbon dioxide capture. An oxygen carrier with high reactivity and excellent physical properties would make CLC technology more competitive. In this work, oxygen carrier with 70 wt% NiO was prepared by spray drying technique. The prepared oxygen carrier had excellent physical properties for fluidized-bed application of CLC process. The reactivity of the oxygen carrier in repeated reduction-oxidation was measured by thermogravimetric analyzer with simulated syngas. Oxygen carrier calcined at 1,100 °C showed high oxygen transfer capacity of 14.7 wt%, utilizing 98% of the transferable oxygen. Oxygen transfer capacity and oxygen transfer rate was increased with the increase of reaction temperature, and the highest oxygen transfer rate was observed when about half of the transferable oxygen reacted with syngas. The reduction rate of the syngas (mixture of H2 and CO) appeared to be approximately the sum of the reaction rate of each fuel gas. The experimental results indicated that the spray-dried NiO oxygen carrier prepared in this work could be a good quality oxygen carrier for the CLC of syngas.  相似文献   
96.

Abstract  

Fischer–Tropsch synthesis (FTS) reaction for the direct production of gasoline range hydrocarbons (C5–C9) from syngas was investigated on cobalt-based FTS catalyst supported on the ZSM-5 possessing a four different Si/Al ratio. The FTS catalysts were prepared by impregnation method using cobalt nitrate precursor in a slurry of ZSM-5, and they were characterized by surface area, XRD, H2-TPR and NH3-TPD. Cobalt supported catalyst on ZSM-5 having a low Si/Al ratio of 15 was found to be superior to the other catalysts in terms of better C5–C9 selectivity due to the formation of small cobalt particle and the presence of larger number of weak acidic sites. It also exhibited the highest catalytic activity because of the higher reducibility and the small cobalt particle size.  相似文献   
97.
Surface functionalization of multiwall carbon nanotubes (MWCNTs) was carried out by introducing a ylide group containing anchored phenol structures. Epoxy nanocomposites filled with modified and pristine carbon nanotubes were prepared, and their mechanical, electrical, and thermal properties were evaluated. Mechanical properties such as tensile strengths and Young’s moduli of the epoxy nanocomposites increased significantly with the addition of the modified MWCNTs compared to the pristine MWCNTs, due to the strong interaction between the modified MWCNTs and the epoxy matrix. Scanning electron microscopy of the fractured epoxy systems revealed that the functionalized MWCNTs were finely dispersed in the matrix, as opposed to the pristine carbon nanotubes. The epoxy/functionalized MWCNT nanocomposite had a lower surface electrical resistance than the epoxy/pristine MWCNT nanocomposite, confirming the effect of functionalization.  相似文献   
98.
BACKGROUND: Purification and enzymatic properties of a chitosanase from Bacillus subtilis RKY3 have been investigated to produce a chitooligosaccharide. The enzyme reported was extracellular and constitutive, which was purified by two sequential steps including ammonium sulfate precipitation and ion exchange chromatography. RESULTS: Sodium dodecyl sulfate‐polyacrylamide gel electrophoresis of the purified chitosanase revealed one single band corresponding to a molecular weight of around 24 kDa. The highest chitosanase activity was found to be at pH 6.0 and at 60 °C. Although the mercaptide forming agents such as Hg2+ (10 mmol L?1) and p‐hydroxymercuribenzoic acid (1 mmol L?1, 10 mmol L?1) significantly or totally inhibited the enzyme activity, its activity was enhanced by the presence of 10 mmol L?1 Mn2+. The enzyme showed activity for hydrolysis of soluble chitosan and glycol chitosan, but colloidal chitin, carboxymethyl cellulose, crystalline cellulose, and soluble starch were not hydrolyzed. The analysis of chitosan hydrolysis by thin‐layer chromatography and viscosity variation revealed that the purified enzyme should be endosplitting‐type chitosanase. CONCLUSION: The chitosanase produced by Bacillus subtilis RKY3 was a novel chitosanlytic enzyme with relatively low molecular weight, which is a versatile enzyme for chitosan hydrolysis because it could hydrolyze soluble chitosan into a biofunctional oligosaccharide at a high level. Copyright © 2011 Society of Chemical Industry  相似文献   
99.
Nanoscale TiO2 particle filled poly(vinylidenefluoride-co-hexafluoropropylene) film is characterized by investigating some properties such as surface morphology, thermal and crystalline properties, swelling behavior after absorbing electrolyte solution, chemical and electrochemical stabilities, ionic conductivity, and compatibility with lithium electrode. Decent self-supporting polymer electrolyte film can be obtained at the range of <50 wt% TiO2. Different optimal TiO2 contents showing maximum liquid uptake may exist by adopting other electrolyte solution. Room temperature ionic conductivity of the polymer electrolyte placed surely on the region of >10−3 S/cm, and thus the film is very applicable to rechargeable lithium batteries. An emphasis is also be paid on that much lower interfacial resistance between the polymer electrolyte and lithium metal electrode can be obtained by the solid-solvent role of nanoscale TiO2 filler.  相似文献   
100.
Hybrid nanocomposites based on organophillic montmorillonite (MMT) and ethylene–propylene–diene rubber (EPDM) have been prepared by a melt compounding process. From analysis by X‐ray diffraction and transmission electron microscopy, the rubber molecules were found to be intercalated into the galleries of organoMMT and the silicate layers of organoMMT are uniformly dispersed as platelets of 50–80 nm thickness in the EPDM matrix. Dynamic mechanical studies reveal a strong rubber–filler interaction in the hybrid nanocomposite which is manifested in the lowering of tan δ at the glass transition temperature. The hybrid nanocomposites exhibit great improvement in tensile and tear strength, and modulus, as well as elongation‐at‐break. Moreover, the permeability of oxygen for the hybrid nanocomposite was reduced remarkably. © 2002 Society of Chemical Industry  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号