首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   897篇
  免费   51篇
电工技术   7篇
化学工业   496篇
金属工艺   19篇
机械仪表   6篇
建筑科学   21篇
矿业工程   9篇
能源动力   32篇
轻工业   159篇
水利工程   6篇
石油天然气   1篇
无线电   16篇
一般工业技术   94篇
冶金工业   11篇
原子能技术   1篇
自动化技术   70篇
  2024年   2篇
  2023年   7篇
  2022年   104篇
  2021年   139篇
  2020年   28篇
  2019年   43篇
  2018年   24篇
  2017年   31篇
  2016年   36篇
  2015年   39篇
  2014年   51篇
  2013年   46篇
  2012年   51篇
  2011年   61篇
  2010年   32篇
  2009年   25篇
  2008年   31篇
  2007年   27篇
  2006年   31篇
  2005年   26篇
  2004年   17篇
  2003年   19篇
  2002年   9篇
  2001年   2篇
  2000年   9篇
  1999年   6篇
  1998年   6篇
  1997年   4篇
  1996年   2篇
  1995年   5篇
  1994年   6篇
  1993年   4篇
  1992年   4篇
  1991年   7篇
  1990年   1篇
  1989年   2篇
  1987年   1篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1979年   1篇
排序方式: 共有948条查询结果,搜索用时 15 毫秒
31.
In this article, the kinetics of thermal decomposition of unsaturated maleic–phthalic polyester resins, flame‐retarded with zinc hydroxystannate, was studied by thermogravimetric analysis at different heating rates. At the first stage, it was found, on the basis of isoconversional analysis by the methods of Friedman and of Ozawa–Flynn–Wall, that the value of the (apparent) activation energy (E) characteristically changes in three steps during the degradation. Further kinetic studies using nonlinear regression methods revealed the best fits for both pristine and stabilized resins. It was observed that the course of E versus the degree of conversion (α) during degradation of zinc hydroxystannate‐containing resins (α > 0.8) was characterized by higher values of E—this phenomenon can be explained in terms of the flame‐retardation action of zinc hydroxystannate, which is believed to operate primarily in the condensed phase. At the next stage, kinetic analysis by the nonregression method was performed to find the kinetic model [f(α) function] of the decomposition process; hence, for pristine resin, the best fit was found for the Avrami–Yerofeeyev model (nuclei growth), and for stabilized samples, the nth‐order function with catalysis proved to be the best approximation. The obtained kinetic parameters in the form of E, the preexponential factor A, and the model function f(α) allow a prediction of the polyester resin's thermal behavior in an extrapolated range of degree of conversion, time, and temperature. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2851–2857, 2003  相似文献   
32.
33.
Nanoengineered biodegradable constructs based on synthetic and natural polymers enriched with hydroxyapatite (HA) nanoparticles have been found to mimic the extracellular matrix of bone tissue. The main objective of this study was to create biocomposite nanostructured scaffolds by incorporating collagen and HA nanoparticles into poly(L-lactic acid)-co-poly(?-caprolactone) by electrospinning. The fiber diameter of the composite PLCL/Col and PLCL/Col/HA fibers was smaller compared to PLCL. In vitro biocompatibility of the scaffolds studied using human fetal osteoblasts and EDX analysis showed high deposition of calcium on PLCL/Col/HA. The results shows that PLCL/Col/HA nanofibrous constructs have huge potential as substrates for bone regeneration.  相似文献   
34.
This study investigates the effect of Dexamethasone (Dex) treatment on blood and skeletal muscle metabolites level and skeletal muscle activity of enzymes related to energy metabolism after long-duration swimming. To evaluate whether Dex treatment, swimming, and combining these factors act on analyzed data, rats were randomly divided into four groups: saline treatment non-exercise and exercise and Dex treatment non-exercised and exercised. Animals in both exercised groups underwent long-lasting swimming. The concentration of lipids metabolites, glucose, and lactate were measured in skeletal muscles and blood according to standard colorimetric and fluorimetric methods. Also, activities of enzymes related to aerobic and anaerobic metabolism were measured in skeletal muscles. The results indicated that Dex treatment induced body mass loss and increased lipid metabolites in the rats’ blood but did not alter these changes in skeletal muscles. Interestingly, prolonged swimming applied after 9 days of Dex treatment significantly intensified changes induced by Dex; however, there was no difference in skeletal muscle enzymatic activities. This study shows for the first time the cumulative effect of exercise and Dex on selected elements of lipid metabolism, which seems to be essential for the patient’s health due to the common use of glucocorticoids like Dex.  相似文献   
35.
Recent reports indicate that the hypoxia-induced factor (HIF1α) and the Warburg effect play an initiating role in glucotoxicity, which underlies disorders in metabolic diseases. WWOX has been identified as a HIF1α regulator. WWOX downregulation leads to an increased expression of HIF1α target genes encoding glucose transporters and glycolysis’ enzymes. It has been proven in the normoglycemic mice cells and in gestational diabetes patients. The aim of the study was to determine WWOX’s role in glucose metabolism regulation in hyperglycemia and hypoxia to confirm its importance in the development of metabolic disorders. For this purpose, the WWOX gene was silenced in human normal fibroblasts, and then cells were cultured under different sugar and oxygen levels. Thereafter, it was investigated how WWOX silencing alters the genes and proteins expression profile of glucose transporters and glycolysis pathway enzymes, and their activity. In normoxia normoglycemia, higher glycolysis genes expression, their activity, and the lactate concentration were observed in WWOX KO fibroblasts in comparison to control cells. In normoxia hyperglycemia, it was observed a decrease of insulin-dependent glucose uptake and a further increase of lactate. It likely intensifies hyperglycemia condition, which deepen the glucose toxic effect. Then, in hypoxia hyperglycemia, WWOX KO caused weaker glucose uptake and elevated lactate production. In conclusion, the WWOX/HIF1A axis downregulation alters glucose metabolism and probably predispose to metabolic disorders.  相似文献   
36.
37.
The article describes the influence of the amount and type of organically modified nanosilica (surface and structure modified Aerosil 7200 and surface-modified Aerosil R711) on the photopolymerization kinetics of tetraethylene glycol dimethacrylate and on the physical properties of nanosilica dispersions in the monomer and the polymer matrix. Kinetic measurements showed that silica addition can accelerate or retard the polymerization depending on the silica content; the magnitude of this affect depends on the type of silica modification and can be associated with stability of silica dispersion (as measured by Zeta potential value). The highest reactivity showed compositions containing 4-5 wt.-% of silica and acceleration of the polymerization seems to result mainly from the increase in the propagation rate coefficient. The composites obtained show a uniform dispersion of nanoparticles within the polymer matrix for the silica content at least several wt.-%. The size of aggregates covered with the polymer layer is between 50 and 150 nm for Aerosil R7200 and 75-300 nm for Aerosil R711.  相似文献   
38.
Environmentally friendly organocatalytic synthesis of aliphatic polyesters was studied. The catalysis investigated is novel, and lends itself well to the potential production of valuable biodegradable products. The reactions were based on an organic acids‐catalyzed ring‐opening polymerization of ε‐caprolactone with fatty acid derivatives as the initiator and were performed in the absence of solvents. The chemical structures of the functionalized polymers were confirmed by 1H and 13C‐NMR spectra. Polymers with different molecular weights, in the range 10,900–15,200 were obtained in the presence of fumaric acid as catalyst. The thermal properties of the functionalized PCLs were determined by modulated differential scanning calorimetry and thermogravimetric analysis. The MDSC results verified that the crystallinity and the melting point of the lipid‐functionalized polymers were lower than that of the unfunctionalized poly(ε‐caprolactone). The hydrolytic degradation of the functionalized polymer was also investigated. The result shows the degradation rate was affected by the presence of oleic acid derivatives in the polymer molecule. The lipid‐functionalized polymers synthesized by the metal‐free polymerization systems seem to be suitable biodegradable polyesters for use in biomedical and pharmacological applications. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   
39.
Opioids are the drugs of choice in severe pain management. Unfortunately, their use involves serious, potentially lethal side effects. Therefore, efforts in opioid drug design turn toward safer and more effective mechanisms, including allosteric modulation. In this study, molecular dynamics simulations in silico and ‘writhing’ tests in vivo were used to characterize potential allosteric mechanism of two previously reported compounds. The results suggest that investigated compounds bind to μ opioid receptor in an allosteric site, augmenting action of morphine at subeffective doses, and exerting antinociceptive effect alone at higher doses. Detailed analysis of in silico calculations suggests that first of the compounds behaves more like allosteric agonist, while the second compound acts mainly as a positive allosteric modulator.  相似文献   
40.
The importance of coenzyme A (CoA) as a carrier of acyl residues in cell metabolism is well understood. Coenzyme A participates in more than 100 different catabolic and anabolic reactions, including those involved in the metabolism of lipids, carbohydrates, proteins, ethanol, bile acids, and xenobiotics. However, much less is known about the importance of the concentration of this cofactor in various cell compartments and the role of altered CoA concentration in various pathologies. Despite continuous research on these issues, the molecular mechanisms in the regulation of the intracellular level of CoA under pathological conditions are still not well understood. This review summarizes the current knowledge of (a) CoA subcellular concentrations; (b) the roles of CoA synthesis and degradation processes; and (c) protein modification by reversible CoA binding to proteins (CoAlation). Particular attention is paid to (a) the roles of changes in the level of CoA under pathological conditions, such as in neurodegenerative diseases, cancer, myopathies, and infectious diseases; and (b) the beneficial effect of CoA and pantethine (which like CoA is finally converted to Pan and cysteamine), used at pharmacological doses for the treatment of hyperlipidemia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号