首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   214篇
  免费   2篇
电工技术   2篇
化学工业   84篇
金属工艺   2篇
机械仪表   1篇
建筑科学   9篇
能源动力   2篇
轻工业   13篇
水利工程   5篇
无线电   7篇
一般工业技术   39篇
冶金工业   31篇
原子能技术   2篇
自动化技术   19篇
  2023年   2篇
  2022年   6篇
  2021年   3篇
  2020年   3篇
  2019年   2篇
  2018年   2篇
  2017年   5篇
  2016年   10篇
  2015年   3篇
  2014年   2篇
  2013年   8篇
  2012年   5篇
  2011年   12篇
  2010年   10篇
  2009年   11篇
  2008年   11篇
  2007年   11篇
  2006年   4篇
  2005年   10篇
  2004年   5篇
  2003年   6篇
  2002年   3篇
  2001年   2篇
  2000年   3篇
  1999年   3篇
  1998年   12篇
  1997年   6篇
  1996年   6篇
  1995年   5篇
  1994年   2篇
  1993年   4篇
  1992年   7篇
  1991年   4篇
  1990年   2篇
  1988年   1篇
  1987年   1篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1982年   4篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   3篇
  1973年   2篇
  1972年   1篇
  1969年   2篇
排序方式: 共有216条查询结果,搜索用时 15 毫秒
41.
Summary: Organic‐inorganic nanocomposite hybrid coatings were prepared through a dual‐cure process involving cationic photopolymerization of a hyperbranched epoxy functionalized resin and subsequent condensation of an alkoxysilane inorganic precursor. All the formulations investigated gave rise to photocured films characterized by high gel content values. An increase in glass transition temperature and an increase in storage modulus above Tg in the rubbery plateau is observed with increasing TEOS content in the photocurable formulation. The important role of GPTS on reducing the inorganic domain size and avoiding macroscopic phase separation was demonstrated by TEM analyses.

TEM obtained for one of the cured films in the presence of GPTS.  相似文献   

42.
Toward living radical polymerization   总被引:2,自引:0,他引:2  
Radical polymerization is one of the most widely used processes for the commercial production of high-molecular-weight polymers. The main factors responsible for the preeminent position of radical polymerization are the ability to polymerize a wide array of monomers, tolerance of unprotected functionality in monomer and solvent, and compatibility with a variety of reaction conditions. Radical polymerization is simple to implement and inexpensive in relation to competitive technologies. However, conventional radical polymerization severely limits the degree of control that researchers can assert over molecular-weight distribution, copolymer composition, and macromolecular architecture. This Account focuses on nitroxide-mediated polymerization (NMP) and polymerization with reversible addition-fragmentation chain transfer (RAFT), two of the more successful approaches for controlling radical polymerization. These processes illustrate two distinct mechanisms for conferring living characteristics on radical polymerization: reversible deactivation (in NMP) and reversible or degenerate chain transfer (in RAFT). We devised NMP in the early 1980s and have exploited this method extensively for the synthesis of styrenic and acrylic polymers. The technique has undergone significant evolution since that time. New nitroxides have led to faster polymerization rates at lower temperatures. However, NMP is only applicable to a restricted range of monomers. RAFT was also developed at CSIRO and has proven both more robust and more versatile. It is applicable to the majority of monomers subject to radical polymerization, but the success of the polymerization depends upon the selection of the RAFT agent for the monomers and reaction conditions. We and other groups have proposed guidelines for selection, and the polymerization of most monomers can be well-controlled to provide minimal retardation and a high fraction of living chains by using one of just two RAFT agents. For example, a tertiary cyanoalkyl trithiocarbonate is suited to (meth)acrylate, (meth)acrylamide, and styrenic monomers, while a cyanomethyl xanthate or dithiocarbamate works with vinyl monomers, such as vinyl acetate or N-vinylpyrrolidone. With the appropriate choice of reagents and polymerization conditions, these reactions possess most of the attributes of living polymerization. We have used these methods in the synthesis of well-defined homo-, gradient, diblock, triblock, and star polymers and more complex architectures, including microgels and polymer brushes. Applications of these polymers include novel surfactants, dispersants, coatings and adhesives, biomaterials, membranes, drug-delivery media, electroactive materials, and other nanomaterials.  相似文献   
43.
The reaction of 1,6‐ and 1,7‐enynes, derived from carboxylic and boronic amino acids, with diazo compounds in the presence of the (cyclooctadiene)(pentamethylcyclopentadiene)ruthenium chloride complex [RuCl(cod)(C5Me5)] catalyst leads to the formation of strained bicyclic proline or homoproline derivatives in good yields. This catalytic transformation proceeds under mild conditions, in one step from easily accessible enynes and was applied to various protecting groups. High stereoselectivities for the created alkenyl chain and excellent diastereoselectivities for proline derivatives were obtained.  相似文献   
44.
45.
The crystallization, the morphology and the thermal behaviour of thin films of isotactic polypropylene (iPP) blended with elastomers such as random ethylene-propylene copolymers (EPM) with different ethylene content and polyisobutylene (PiB) were investigated by means of optical microscopy, differential scanning calorimetry and wide angle X-ray diffractometry. During crystallization EPM copolymers are ejected on the surface of the film forming droplet-like domains. A different morphology is observed in iPP/PiB blends. For these mixtures the elastomers separate from the iPP phase forming spherical domains that are incorporated in the iPP intraspherulitic regions. Both EPM and PiB elastomers act as nucleant agents for iPP spherulites. This nucleation efficiency is strongly dependent on the chemical structure and molecular mass of the elastomers. The addition of EPM causes an elevation of the observed and equilibrium melting temperature of iPP. This unusual effect may be accounted for by assuming that the elastomers are able to extract selectively the more defective molecules of iPP. The depression of the growth rate of spherulites and the observed and equilibrium melting temperature of iPP, noted in iPP/PiB blends, suggests that these two polymers have a certain degree of compatibility in the melt.  相似文献   
46.
The influence of stereochemical composition of the radial growth rate of spherulites, the nucleation density, the overall rate of crystallization and the thermal behaviour of fractions of iPP samples synthesized with different catalyst systems (low, high and very high yield) was investigated. The study used 13C n.m.r., differential scanning calorimetry (d.s.c.) and optical microscopy. The 13C n.m.r. analysis showed that due to the presence of catalytic sites with different stereoregulating capability the catalyst system produces polypropylene with different stereoregularity. It was found that the growth rate of spherulites and the overall rate of crystallization are strictly related to the stereochemical structure of the polypropylene. Moreover, for the low yield iPP, phenomena of secondary crystallization were observed by Avrami analysis of the overall kinetics. Values of the equilibrium melting temperature (Tm), energy of nucleation (Δø1) and surface free energy of folding (σe) of iPP lamellar crystals have been determined according to the kinetic theory of polymer crystallization. The values of such thermodynamic quantities as well as the thermal behaviour of various iPP are strongly dependent upon the amount and distribution of configurational irregularities existing along the chains and upon the molecular mass distribution.  相似文献   
47.
The tensile properties of the high-chromium tempered martensitic reduced activation steel Eurofer97 were determined from tests carried out over a wide range of strain-rates on cylindrical specimens. The quasi-static tests were performed with a universal electro-mechanical machine, whereas a hydro-pneumatic machine and a JRC-split Hopkinson tensile bar apparatus were used for medium and high strain-rates respectively. This tempered martensitic stainless steel showed significant strain-rate sensitivity. The constitutive behavior was investigated within a framework of dislocations dynamics model using Kock’s approach. The parameters of the model were determined and then used to predict the deformation range of the tensile deformation stability. A very good agreement between the experimental results and predictions of the model was found.  相似文献   
48.
The effect of short-length carbon and Kevlar fibers on the crystallization of isotactic polypropylene (iPP) in composites prepared by compression molding has been investigated. The tendency of carbon and Kevlar fibers to nucleate the iPP during isothermal and nonisothermal crystallization has been evaluated by differential scanning calorimetry. The influence of different thermal histories used to prepare the unreinforced and reinforced samples on the crystallization parameters of iPP was examined. In addition, the tensile behavior was related to the resulting morphologies of the samples. It was observed that the crystallinity content, obtained by using different thermal treatments (slowly cooling or quenching), gives rise to different morphologies by influencing the mechanical behavior of materials as well. Moreover, the composites obtained by slow cooling seem to present a better fibber/matrix adhesion then that found in quenched samples. Possible underlying microstructures, which can explain the properties and the morphological characteristics, are also discussed.  相似文献   
49.
This review focuses on processes for thiocarbonylthio group removal/transformation of polymers synthesized by radical polymerization with reversible addition‐fragmentation‐chain transfer (RAFT). A variety of processes have now been reported in this context. These include reactions with nucleophiles, radical‐induced reactions, thermolysis, electrocyclic reactions and ‘click’ processes. We also consider the use of RAFT‐synthesized polymers in the construction of block or graft copolymers, functional nanoparticles and biopolymer conjugates where transformation of the thiocarbonylthio group is an integral part of the process. This includes the use of RAFT‐synthesized polymers in other forms of radical polymerization such as atom transfer radical polymerization or nitroxide‐mediated polymerization, and the ‘switching’ of thiocarbonylthio groups to enable control over polymerization of a wider range of monomers in the RAFT process. With each process we provide information on the scope and, where known, indicate the mechanism, advantages and limitations. Copyright © 2011 Society of Chemical Industry  相似文献   
50.
PHANTOM is a tree level Monte Carlo for six parton final states at proton-proton, proton-antiproton and electron-positron colliders at and including possible interferences between the two sets of diagrams. This comprehends all purely electroweak contributions as well as all contributions with one virtual or two external gluons. It can generate unweighted events for any set of processes and it is interfaced to parton shower and hadronization packages via the latest Les Houches Accord protocol. It can be used to analyze the physics of boson-boson scattering, Higgs boson production in boson-boson fusion, and three boson production.

Program summary

Program title:PHANTOM (V. 1.0)Catalogue identifier: AECE_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECE_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 175 787No. of bytes in distributed program, including test data, etc.: 965 898Distribution format: tar.gzProgramming language: Fortran 77Computer: Any with a UNIX, LINUX compatible Fortran compilerOperating system: UNIX, LINUXRAM: 500 MBClassification: 11.1External routines: LHAPDF (Les Houches Accord PDF Interface, http://projects.hepforge.org/lhapdf/), CIRCE (beamstrahlung for e+e ILC collider).Nature of problem: Six fermion final state processes have become important with the increase of collider energies and are essential for the study of top, Higgs and electroweak symmetry breaking physics at high energy colliders. Since thousands of Feynman diagrams contribute in a single process and events corresponding to hundreds of different final states need to be generated, a fast and stable calculation is needed.Solution method:PHANTOM is a tree level Monte Carlo for six parton final states at proton-proton, proton-antiproton and electron-positron colliders. It computes all amplitudes at and including possible interferences between the two sets of diagrams. The matrix elements are computed with the helicity formalism implemented in the program PHACT [1]. The integration makes use of an iterative-adaptive multichannel method which, relying on adaptivity, allows the use of only a few channels per process. Unweighted event generation can be performed for any set of processes and it is interfaced to parton shower and hadronization packages via the latest Les Houches Accord protocol.Restrictions: All Feynman diagrams are computed al LO.Unusual features: Phantom is written in Fortran 77 but it makes use of structures. The g77 compiler cannot compile it as it does not recognize the structures. The Intel, Portland Group, True64 HP Fortran 77 or Fortran 90 compilers have been tested and can be used.Running time: A few hours for a cross section integration of one process at per mille accuracy. One hour for one thousand unweighted events.References:
[1]
A. Ballestrero, E. Maina, Phys. Lett. B 350 (1995) 225, hep-ph/9403244; A. Ballestrero, PHACT 1.0, Program for helicity amplitudes Calculations with Tau matrices, hep-ph/9911318, in: B.B. Levchenko, V.I. Savrin (Eds.), Proceedings of the 14th International Workshop on High Energy Physics and Quantum Field Theory (QFTHEP 99), SINP MSU, Moscow, p. 303.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号