首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   6篇
电工技术   3篇
化学工业   12篇
金属工艺   2篇
机械仪表   5篇
轻工业   1篇
无线电   13篇
一般工业技术   6篇
冶金工业   1篇
自动化技术   19篇
  2023年   3篇
  2022年   5篇
  2021年   6篇
  2020年   1篇
  2019年   7篇
  2017年   6篇
  2016年   7篇
  2015年   3篇
  2014年   5篇
  2013年   4篇
  2012年   6篇
  2011年   3篇
  2010年   2篇
  2007年   2篇
  2001年   1篇
  1998年   1篇
排序方式: 共有62条查询结果,搜索用时 15 毫秒
41.
Because of noise and reverberation, accuracy of speech recognition systems decreases when the distance between talker and microphone increases. By the using of microphone arrays and appropriate filtering of received signals, the accuracy of recognizer can be increased. Many different methods for using microphone arrays have been proposed that can be classified into two main approaches: systems that perform in two independent stages of array processing and then recognition and systems that use array processing to generate a sequence of features which maximize the likelihood of generating the correct hypothesis in recognition phase. Following second approach, in this paper a new method for microphone array processing is proposed in which the parameters of array processing are adjusted in calibration phase based on phones used in language and maximum likelihood method. Optimized filter parameters are stored and used during recognition phase. A new modified Viterbi algorithm using optimal phone-based filter parameters is used for recognition phase. The proposed algorithm is analytically formulated and Persian language is used to find any improvement in speech recognition accuracy compared with results of delay and sum and utterance-based filter and sum algorithms. The results show 12.2% improvement in accuracy compared to utterance-based algorithm.  相似文献   
42.
43.
This research was carried out to embed hydrophobic silica nano-particles on the cotton surface using 1,2,3,4-butanetetracarboxylic acid (BTCA) as a crosslinking agent and sodium hypophosphite as a catalyst. The influence of the amount of silica nano-particles on the performance of the cotton fibers was investigated employing Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy (RS), Thermogravimetric analysis (TGA), limited oxygen index (LOI), scanning electron microscopy (SEM), water contact angle (WCA), reflectance spectroscopy (RS) and abrasion resistance (AR). The possible interactions between silica nano-particles, the crosslinking agent and the cotton functional groups at the surface were elucidated by ATR-FTIR and Raman spectroscopy. The results indicated that the embedded silica nano-particles modify the surface of fibers increasing the hydrophobicity and thermal stability of substrate. The microscopic analysis showed a uniform coating of silica nano-particles on the surface of fibers.  相似文献   
44.
In the near future, demand for heterogeneous wireless networking (HWN) is expected to increase. QoS provisioning in these networks is a challenging issue considering the diversity in wireless networking technologies and the existence of mobile users with different communication requirements. In HWNs with their increased complexity, “the curse of dimensionality” problem makes it impractical to directly apply the decision theoretic optimal control methods that are previously used in homogeneous wireless networks to achieve desired QoS levels. In this paper, optimal call admission control policies for HWNs are considered. A decision theoretic framework for the problem is derived by a dynamic programming formulation. We prove that for a two-tier wireless network architecture, the optimal policy has a two-dimensional threshold structure. Further, this structural result is used to design two computationally efficient algorithms, Structured Value Iteration and Structured Update Value Iteration. These algorithms can be used to determine the optimal policy in terms of thresholds. Although the first one is closer in its operation to the conventional Value Iteration algorithm, the second one has a significantly lower complexity. Extensive numerical observations suggest that, for all practical parameter sets, the algorithms always converge to the overall optimal policy. Further, the numerical results show that the proposed algorithms are efficient in terms of time-complexity and in achieving the optimal performance.  相似文献   
45.
Nonlinear feature extraction of speech signals has been the main concern of many researches in recent years. In this paper, feature extraction of phonemes using NPC (neural predictive coding) model is generalized to a combination of time and DCT domains. Two main ideas were proposed and evaluated in this paper. First, a frame-wise DCT-based NPC feature extractor is proposed to overcome the computational complexity deficiency of the system. The basis of this approach is the application of a DCT pre-feature extractor to remove unwanted additional data. In this approach, the extracted features are the output of the hidden layer. It is shown that the use of a pre-processing stage can improve both computational complexity efficiency and accuracy issues. At the second approach, we proposed a complementary role for DCT domain features in classic NPC modeling. This approach uses the signal residual of the predicted signal in the DCT domain. The experiments were conducted on voiced plosive phonemes of TIMIT database. Simulations showed that the performance of the combined method is good at the plosive phonemes. The achieved accuracy that was resulted from the proposed method was 70.3% recognition rate on /b/d/g/ phonemes, which is higher than the results of traditional NPC approaches.  相似文献   
46.
Introduction: Familial dilated cardiomyopathy (DCM) is clinically variable and has been associated with mutations in more than 50 genes. Rapid improvements in DNA sequencing have led to the identification of diverse rare variants with unknown significance (VUS), which underlines the importance of functional analyses. In this study, by investigating human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs), we evaluated the pathogenicity of the p.C335R sodium voltage-gated channel alpha subunit 5 (SCN5a) variant in a large family with familial DCM and conduction disease. Methods: A four-generation family with autosomal dominant familial DCM was investigated. Next-generation sequencing (NGS) was performed in all 16 family members. Clinical deep phenotyping, including endomyocardial biopsy, was performed. Skin biopsies from two patients and one healthy family member were used to generate human-induced pluripotent stem cells (iPSCs), which were then differentiated into cardiomyocytes. Patch-clamp analysis with Xenopus oocytes and iPSC-CMs were performed. Results: A SCN5a variant (c.1003T>C; p.C335R) could be detected in all family members with DCM or conduction disease. A novel truncating TTN variant (p.Ser24998LysfsTer28) could also be identified in two family members with DCM. Family members with the SCN5a variant (p.C335R) showed significantly longer PQ and QRS intervals and lower left ventricular ejection fractions (LV-EF). All four patients who received CRT-D were non-responders. Electrophysiological analysis with Xenopus oocytes showed a loss of function in SCN5a p.C335R. Na+ channel currents were also reduced in iPSC-CMs from DCM patients. Furthermore, iPSC-CM with compound heterozygosity (SCN5a p.C335R and TTNtv) showed significant dysregulation of sarcomere structures, which may be contributed to the severity of the disease and earlier onset of DCM. Conclusion: The SCN5a p.C335R variant is causing a loss of function of peak INa in patients with DCM and cardiac conduction disease. The co-existence of genetic variants in channels and structural genes (e.g., SCN5a p.C335R and TTNtv) increases the severity of the DCM phenotype.  相似文献   
47.
Dilated cardiomyopathy (DCM) is a common cause of heart failure (HF) and is of familial origin in 20–40% of cases. Genetic testing by next-generation sequencing (NGS) has yielded a definite diagnosis in many cases; however, some remain elusive. In this study, we used a combination of NGS, human-induced pluripotent-stem-cell-derived cardiomyocytes (iPSC-CMs) and nanopore long-read sequencing to identify the causal variant in a multi-generational pedigree of DCM. A four-generation family with familial DCM was investigated. Next-generation sequencing (NGS) was performed on 22 family members. Skin biopsies from two affected family members were used to generate iPSCs, which were then differentiated into iPSC-CMs. Short-read RNA sequencing was used for the evaluation of the target gene expression, and long-read RNA nanopore sequencing was used to evaluate the relevance of the splice variants. The pedigree suggested a highly penetrant, autosomal dominant mode of inheritance. The phenotype of the family was suggestive of laminopathy, but previous genetic testing using both Sanger and panel sequencing only yielded conflicting evidence for LMNA p.R644C (rs142000963), which was not fully segregated. By re-sequencing four additional affected family members, further non-coding LMNA variants could be detected: rs149339264, rs199686967, rs201379016, and rs794728589. To explore the roles of these variants, iPSC-CMs were generated. RNA sequencing showed the LMNA expression levels to be significantly lower in the iPSC-CMs of the LMNA variant carriers. We demonstrated a dysregulated sarcomeric structure and altered calcium homeostasis in the iPSC-CMs of the LMNA variant carriers. Using targeted nanopore long-read sequencing, we revealed the biological significance of the variant c.356+1G>A, which generates a novel 5′ splice site in exon 1 of the cardiac isomer of LMNA, causing a nonsense mRNA product with almost complete RNA decay and haploinsufficiency. Using novel molecular analysis and nanopore technology, we demonstrated the pathogenesis of the rs794728589 (c.356+1G>A) splice variant in LMNA. This study highlights the importance of precise diagnostics in the clinical management and workup of cardiomyopathies.  相似文献   
48.
In this paper, we propose a simple method for generating short-length rate-compatible codes that are robust to noncoherent detection forM-PSK constellations. For any given constellation set, first we use a greedy algorithm to construct a family of rotationally invariant codes. Then, by properly modifying such codes, we obtain a new family of codes that are robust to noncoherent detection. We briefly discuss the optimality of the constructed codes for special cases of BPSK and QPSK constellations. Our method provides an upper bound for the length of optimal codes with a given desired noncoherent distance. We also derive a simple asymptotic upper bound on the frame error rate (FER) of such codes and provide some simulations. Finally, the problem of designing binary codes that are robust to noncoherent detection for QPSK constellation is briefly discussed.  相似文献   
49.
Injectable composite colloidal gels are developed for regeneration of osteoporotic bone defects through a bottom‐up assembly from bisphosphonate‐functionalized gelatin and bioactive glass particles. Upon bisphosphonate functionalization, gelatin nanoparticles show superior adhesion toward bioactive glass particles, resulting in elastic composite gels. By tuning their composition, these composite colloidal gels combine mechanical robustness with self‐healing ability. The composite colloidal gels support cell proliferation and differentiation in vitro without requiring any osteogenic supplement. In vivo evaluation of the composite colloidal gels reveals their capacity to support the regeneration of osteoporotic bone defects. Furthermore, the bisphosphonate modification of gelatin induces a therapeutic effect on the peri‐implantation region by enhancing the bone density of the osteoporotic bone tissue. Consequently, these composite colloidal gels offer new therapeutic opportunities for treatment of osteoporotic bone defects.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号