首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   800篇
  免费   91篇
  国内免费   2篇
电工技术   4篇
综合类   2篇
化学工业   334篇
金属工艺   17篇
机械仪表   14篇
建筑科学   15篇
矿业工程   1篇
能源动力   38篇
轻工业   105篇
水利工程   14篇
石油天然气   6篇
无线电   64篇
一般工业技术   161篇
冶金工业   10篇
原子能技术   10篇
自动化技术   98篇
  2024年   3篇
  2023年   18篇
  2022年   53篇
  2021年   73篇
  2020年   62篇
  2019年   68篇
  2018年   92篇
  2017年   73篇
  2016年   71篇
  2015年   40篇
  2014年   57篇
  2013年   81篇
  2012年   51篇
  2011年   48篇
  2010年   36篇
  2009年   16篇
  2008年   16篇
  2007年   10篇
  2006年   8篇
  2005年   3篇
  2004年   2篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1998年   3篇
  1992年   1篇
  1989年   1篇
  1981年   1篇
排序方式: 共有893条查询结果,搜索用时 78 毫秒
51.
International Journal of Coal Science & Technology - The modeling of hydrocarbon selectivity and CO conversion of the Fischer–Tropsch synthesis over Fe–Ni/Al2O3 catalyst by using...  相似文献   
52.
Rice crops are often subject to multiple abiotic stresses simultaneously in both natural and cultivated environments, resulting in yield reductions beyond those expected from single stress. We report physiological changes after a 4 day exposure to combined drought, salt and extreme temperature treatments, following a 2 day salinity pre-treatment in two rice genotypes—Nipponbare (a paddy rice) and IAC1131 (an upland landrace). Stomata closed after two days of combined stresses, causing intercellular CO2 concentrations and assimilation rates to diminish rapidly. Abscisic acid (ABA) levels increased at least five-fold but did not differ significantly between the genotypes. Tandem Mass Tag isotopic labelling quantitative proteomics revealed 6215 reproducibly identified proteins in mature leaves across the two genotypes and three time points (0, 2 and 4 days of stress). Of these, 987 were differentially expressed due to stress (cf. control plants), including 41 proteins that changed significantly in abundance in all stressed plants. Heat shock proteins, late embryogenesis abundant proteins and photosynthesis-related proteins were consistently responsive to stress in both Nipponbare and IAC1131. Remarkably, even after 2 days of stress there were almost six times fewer proteins differentially expressed in IAC1131 than Nipponbare. This contrast in the translational response to multiple stresses is consistent with the known tolerance of IAC1131 to dryland conditions.  相似文献   
53.
A novel coronavirus of zoonotic origin(SARSCoV-2)has recently been recognized in patients with acute respiratory disease.COVID-19 causative agent is structurally and genetically similar to SARS and bat SARS-like coronaviruses.The drastic increase in the number of coronavirus and its genome sequence have given us an unprecedented opportunity to perform bioinformatics and genomics analysis on this class of viruses.Clinical tests like PCR and ELISA for rapid detection of this virus are urgently needed for early identification of infected patients.However,these techniques are expensive and not readily available for point-of-care(POC)applications.Currently,lack of any rapid,available,and reliable POC detection method gives rise to the progression of COVID-19 as a horrible global problem.To solve the negative features of clinical investigation,we provide a brief introduction of the general features of coronaviruses and describe various amplification assays,sensing,biosensing,immunosensing,and aptasensing for the determination of various groups of coronaviruses applied as a template for the detection of SARS-CoV-2.All sensing and biosensing techniques developed for the determination of various classes of coronaviruses are useful to recognize the newly immerged coronavirus,i.e.,SARS-CoV-2.Also,the introduction of sensing and biosensing methods sheds light on the way of designing a proper screening system to detect the virus at the early stage of infection to tranquilize the speed and vastity of spreading.Among other approaches investigated among molecular approaches and PCR or recognition of viral diseases,LAMP-based methods and LFAs are of great importance for their numerous benefits,which can be helpful to design a universal platform for detection of future emerging pathogenic viruses.  相似文献   
54.
55.
Esmaeili  Akbar  Pourkhodabakhshi  Fatemeh 《SILICON》2020,12(3):521-534
Silicon - Metformin (MF) and L. albuman are used to treat type 2 diabetes. Diabetes causes problems such as blindness and albumin excretion. In this study, metformin, L. albuman and a composition...  相似文献   
56.
Shabani  Mohsen Ostad  Baghani  Amir  Khorram  Ali  Heydari  Fatemeh 《SILICON》2020,12(12):2977-2987
Silicon - Magnetic stirring is considered to be the most useful stirring method in semi-solid casting processes which doesn’t have the restrictions of the mechanical stirring. In this...  相似文献   
57.
Shariati  Fatemeh  Poordeljoo  Tahereh  Zanjanchi  Pegah 《SILICON》2020,12(12):2941-2946
Silicon - SiO2 nano-particles are applied in different industries such as ceramic producing, glass making, cosmetic products, medicines, magnetic mixtures, heat and electric insulators and glazing...  相似文献   
58.
A simple and novel method based on high‐performance liquid chromatography with dual‐wavelength ultraviolet detection at 234 and 254 nm has been developed for the determination of underivatized N‐nitrosodiethanolamine in coconut diethanolamide. The correlation coefficient obtained shows that the method is correct.  相似文献   
59.
The authors aimed to design nanofibrous (NF) scaffolds that facilitate odontogenic and osteogenic differentiation of human dental pulp-derived mesenchymal stem cells (DPSCs) in vitro. For this purpose, hydroxyapatite (HA)–loaded poly (L-lactic acid)/poly (?-caprolactone) (PLLA:PCL 2;1) blend NFs were prepared using the electrospinning method. Alizarin red activity and cell viability were evaluated by MTT assay, and SEM revealed the proliferation properties of NF scaffolds. QRT-PCR results demonstrated that HA-loaded PLLA/PCL can lead to osteoblast/odontoblast differentiation in DPSCs through the up-regulation of related genes, thus indicating that electrospun biodegradable PCL/PLA/HA has remarkable prospects as scaffolds for bone and tooth tissue engineering.  相似文献   
60.
Vane liquid–gas demisters are widely used as one of the most efficient separators. To achieve higher liquid disposal and to avoid flooding, vanes are enhanced with drainage channels. In this research, the effects of drainage channel geometry parameters on the droplet removal efficiency have been investigated applying CFD techniques. The observed parameters are channel angle, channel height and channel length. The gas phase flow field was determined by the Eulerian method and the droplet flow field and trajectories were computed applying the Lagrangian method. The turbulent dispersion of the droplets was modeled using the discrete random walk (DRW) approach. The CFD simulation results indicate that by applying DRW model, the droplet separation efficiency predictions for small droplets are closer to the corresponding experimental data. The CFD simulation results showed that in the vane, enhanced with drainage channels, fewer low velocity sectors were observed in the gas flow field due to more turbulence. Consequently, the droplets had a higher chance of hitting the vane walls leading to higher separation efficiency. On the other hand, the parameters affect the liquid droplet trajectory leading to the changes in separation efficiency and hydrodynamic characteristic of the vane. To attain the overall optimum geometry of the drainage channel, all three geometry parameters were simultaneously studied employing 27 CFD simulation cases. To interpolate the overall optimal geometry a surface methodology method was used to fit the achieved CFD simulation data and finally a polynomial equation was proposed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号