首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1176篇
  免费   93篇
  国内免费   2篇
电工技术   21篇
化学工业   305篇
金属工艺   26篇
机械仪表   38篇
建筑科学   17篇
矿业工程   1篇
能源动力   93篇
轻工业   248篇
水利工程   5篇
石油天然气   6篇
无线电   146篇
一般工业技术   192篇
冶金工业   28篇
原子能技术   6篇
自动化技术   139篇
  2024年   2篇
  2023年   29篇
  2022年   37篇
  2021年   71篇
  2020年   40篇
  2019年   54篇
  2018年   47篇
  2017年   59篇
  2016年   51篇
  2015年   44篇
  2014年   41篇
  2013年   101篇
  2012年   82篇
  2011年   95篇
  2010年   71篇
  2009年   95篇
  2008年   72篇
  2007年   48篇
  2006年   51篇
  2005年   22篇
  2004年   27篇
  2003年   18篇
  2002年   19篇
  2001年   16篇
  2000年   17篇
  1999年   10篇
  1998年   11篇
  1997年   3篇
  1995年   6篇
  1994年   9篇
  1993年   2篇
  1992年   2篇
  1990年   4篇
  1989年   7篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1981年   1篇
  1968年   1篇
排序方式: 共有1271条查询结果,搜索用时 15 毫秒
51.
We isolated a substance from fructose–tyrosine Maillard reaction products (MRPs) and investigated its antiproliferative effect on six human cancer cell lines. The ethyl acetate fraction of fructose–tyrosine MRPs showed a strong antiproliferative effect; this fraction was isolated and purified using silica gel column chromatography, semipreparative RP-HPLC, and recycling HPLC. The structure of the purified compound was determined using spectroscopic methods. The isolated compound was identified as 2,4-bis(p-hydroxyphenyl)-2-butenal (C16H14O3, HPB242). HPB242 inhibited cell growth in a dose-dependent manner (10–80 μg/ml) on the six human cancer cell lines. The IC50 values of HPB242 on the six human cancer cell lines were 17.34 μg/ml (MCF-7), 29.21 μg/ml (HCT-116), 34.57 μg/ml (H-460), 34.87 μg/ml (HepG2), 48.77 μg/ml (PC-3), and 55.83 μg/ml (MKN-45).  相似文献   
52.
Addressed herein, we reported the fabrication of the graphene oxide (GO) supported monodispersed ruthenium–platinum–nickel (RuPtNi) nanomaterials (3.40 ± 0.32 nm) to be utilized as a catalyst in the process of dimethylamine borane (DMAB) dehydrogenation. The nanoparticles were fabricated through the ultrasonication method by co-reducing the Ru3+, Pt2+ and Ni2+ cations and then the nanomaterials were characterized by X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), electron energy loss spectroscopy (EELS), inductively coupled plasma optical emission spectrometry (ICP-OES), and X-ray photoelectron spectroscopy (XPS). The fabricated nanomaterials showed outstanding efficiency and remarkable reusability in addition to their record catalytic activity at low temperatures and with extreme low concentrations. They had a significantly high turnover frequency (TOF) (727 h?1) and low activation energy (Ea) (49.43 ± 2 kJ mol?1) for DMAB dehydrocoupling. To the best of our knowledge, RuPtNi@GO NPs become a very promising candidate as the best catalyst ever.  相似文献   
53.
54.
A great deal of genetic variability and breeding efforts have yielded a number of specialty maize types. Little is known about how the off‐target traits in specialty maize kernel have changed and how they compare to those of standard maize genotypes. In this study, we compared the normal (NORMAL), high‐oil (HOM) and high‐protein maize (HPM) genotypes in terms of oil, protein, fatty acids and some mineral components. We also investigated the relationships among the evaluated traits in different kernel types. We detected a significant variation among the maize types for all of the investigated traits. Specialty maize genotypes had a superior performance for the traits they were specifically bred for, as well as kernel mineral content over the normal genotypes. HOM and HPM had similar values in terms of their fatty acid composition. However, they were different from the standard genotypes, with higher oleic and lower linolenic acid levels, which indicates that the specialty maize genotypes possess a better oil quality. Correlation analysis revealed that only three pairs of correlations out of 46 values had the same sign and a similar level of significance in different types. Such similarities or differences in correlation values for different types should be taken into account in the efforts for developing high quality maize genotypes.  相似文献   
55.
We investigated the influence of CuO amount (0.5–3.0 mol%), sintering temperature (900°C–1000°C), and sintering time (2–6 h) on the low‐temperature sintering behavior of CuO‐added Bi0.5(Na0.78K0.22)0.5TiO3 (BNKT22) ceramics. Normalized strain (Smax/Emax), piezoelectric coefficient (d33), and remanent polarization (Pr) of 1.0 mol% CuO‐added BNKT22 ceramics sintered at 950°C for 4 h was 280 pm/V, 180 pC/N, and 28 μC/cm2, respectively. These values are similar to those of pure BNKT22 ceramics sintered at 1150°C. In addition, we investigated the performance of multilayer ceramic actuators made from CuO‐added BNKT22 in acoustic sound speaker devices. A prototype sound speaker device showed similar output sound pressure levels as a Pb(Zr,Ti)O3‐based device in the frequency range 0.66–20 kHz. This result highlights the feasibility of using low‐cost multilayer ceramic devices made of lead‐free BNKT‐based piezoelectric materials in sound speaker devices.  相似文献   
56.
Adhesion of root canal filling materials to root dentin is important for the long-term success of the treatment. Push-out bond strength test is used to evaluate the adhesion capacity of root canal filling materials to root canal walls. The aim of the present study is to compare the bond strength of root canal filling materials to root dentin after irrigation with EDTA, chitosan and the combination of chitosan and PIPS irridation using push-out bond strength test. Forty-eight extracted teeth were resected until 13-mm long roots were obtained. Root canals were prepared with a size-25 OneShape instrument. Samples were divided into three groups each including 15 roots. Group 1: Canals were rinsed with 0.2% chitosan and subjected to laser irridation with PIPS at the same time. Group 2: Canals were rinsed with 0.2% chitosan. Group 3: Canals were rinsed with EDTA. All canals were filled with .06 tapered gutta-percha and AH-plus sealer. One-mm thick slices were taken from coronal, middle and apical one-thirds of the roots. Push-out bond strength was determined using a Universal Testing Machine. One root from each group was observed under SEM to evaluate the degree of smear removal. Statistical analysis was performed with Kruskall-Wallis test. Results showed that bond strength values were statistically similar in overall evaluation for all groups (p > .05). In segmental evaluation, group 1 revealed the highest bond strength in apical one-third compared to other groups (p < .05).  相似文献   
57.

Enzymes are extensively used as catalyst in several fields of production such as chemistry, and pharmaceuticals owing to their selectivity, efficiency and environmentally friendliness. However, their applications are often hindered due to their insufficient stability and difficulties in re-use. As a member of porous crystalline materials, metal organic frameworks are a promising enzyme carrier due to their multi-functional pore surfaces and robustness in variety of harsh conditions. In this study, the horseradish peroxidase (HRP) enzyme was immobilized onto UiO-66-NH2 (Universitetet i Oslo) by a facile incubation method at the room temperature to improve the stability and reusability of enzyme. The prepared HRP@UiO-66-NH2 bio-composite was characterized by using FT-IR, XRD and SEM. The crystal structure of MOF was well-preserved after enzyme immobilization. A colorimetric assay for enzyme activity after released from UiO-66-NH2 has been employed based on the catalytic oxidation of phenol coupled with 4-aminoantipyrine. The robustness and activity of immobilized enzyme after released from UiO-66-NH2 were investigated by biodegradation of methyl orange (MO) and methylene blue (MB) with several parameters such as pH, temperature, the dosage of H2O2 and the dye concentration with comparison to its free form. The optimum condition for dye degradation was obtained at basic conditions. The immobilized enzyme maintained its activity at elevated temperature while free enzyme lost its activity at the same conditions, attributed to the armoring effect of UiO-66-NH2. According to the results of studied various parameters, MO and MB were biodegraded to 60% and 45%, respectively, within 60 min with the optimum conditions at pH 9 and 50 °C at a H2O2 dosage of 3%. The superior pH tolerance and stability suggest potential of UiO-66-NH2 immobilized peroxidase enzyme in industrial applications.

  相似文献   
58.
Due to its rheological properties, positive lead-acid battery paste can be difficult to spread on lead current collectors accurately and efficiently under industry machinery and setting. Sodium polymethacrylate dispersant was studied as an effective positive paste additive that could lower the yield stress of the paste without affecting paste density and battery performance. Under a four-blade vane rheometer setup, stress growth and oscillatory amplitude strain sweep experiments evaluated the rheological properties of positive paste with the addition of varying amounts of sodium polymethacrylate. Further, the electrochemical effects of sodium polymethacrylate were also evaluated in 2V batteries by testing positive active material utilization and cycle life.  相似文献   
59.
Platinum electrocatalysts were prepared using PtCl4 as a starting material and 1-decylamine, N,N-dimethyldecylamine, 1-dodecylamine, N,N-dimethyldodecylamine, 1-hexadecylamine, and 1-octadecylamine as surfactants. These surfactants were used for the first time in this synthesis to determine whether the primary and/or tertiary structure and/or chain length of the surfactants, affects the size and/or activity of the catalysts in C1–C3 alcohol electro-oxidation reactions. Electrochemical measurements (cyclic voltammetry and chronoamperometry) indicated that the highest electrocatalytic performance was observed for the Pt nanocatalysts that were stabilized by N,N-dimethyldecylamine, and this has a tertiary amine structure with a short chain length (R = C10H21). The high performance may be due to the high electrochemical surface area, Pt(0)/Pt(IV) ratio, %Pt utility, and roughness factor (R f). X-ray photoelectron spectroscopy, X-ray diffraction, atomic force microscopy, and transmission electron microscopy were used to determine the parameters that affect the catalytic activities.  相似文献   
60.
In this study, the kinetic parameters and reaction mechanism of decomposition process of oligo(4‐hydroxyquinoline) synthesized by oxidative polymerization were investigated by thermogravimetric analysis (TGA) at different heating rates. TGA‐derivative thermogravimetric analysis curves showed that the thermal decomposition occurred in two stages. The methods based on multiple heating rates such as Kissinger, Kim–Park, Tang, Flynn–Wall–Ozawa method (FWO), Friedman, and Kissinger–Akahira–Sunose (KAS) were used to calculate the kinetic parameters related to each decomposition stage of oligo(4‐hydroxyquinoline). The activation energies obtained by Kissinger, Kim–Park, Tang, KAS, FWO, and Friedman methods were found to be 153.80, 153.89, 153.06, 152.62, 151.25, and 157.14 kJ mol?1 for the dehydration stage, 124.7, 124.71, 126.14, 123.75, 126.19, and 124.05 kJ mol?1 for the thermal decomposition stage, respectively, in the conversion range studied. The decomposition mechanism and pre‐exponential factor of each decomposition stage were also determined using Coats–Redfern, van Krevelen, Horowitz–Metzger methods, and master plots. The analysis of the master plots and methods based on single heating rate showed that the mechanisms of dehydration and decomposition stage of oligo(4‐hydroxyquinoline) were best described by kinetic equations of An mechanism (nucleation and growth, n = 1) and Dn mechanism (dimensional diffusion, n = 6), respectively. POLYM. ENG. SCI., 54:992–1002, 2014. © 2013 Society of Plastics Engineers  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号