首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2004篇
  免费   104篇
  国内免费   11篇
电工技术   27篇
综合类   9篇
化学工业   672篇
金属工艺   40篇
机械仪表   70篇
建筑科学   49篇
能源动力   148篇
轻工业   275篇
水利工程   18篇
石油天然气   10篇
无线电   172篇
一般工业技术   325篇
冶金工业   35篇
原子能技术   4篇
自动化技术   265篇
  2024年   7篇
  2023年   43篇
  2022年   108篇
  2021年   150篇
  2020年   95篇
  2019年   102篇
  2018年   129篇
  2017年   113篇
  2016年   140篇
  2015年   93篇
  2014年   129篇
  2013年   217篇
  2012年   181篇
  2011年   159篇
  2010年   100篇
  2009年   73篇
  2008年   41篇
  2007年   34篇
  2006年   27篇
  2005年   25篇
  2004年   19篇
  2003年   20篇
  2002年   12篇
  2001年   18篇
  2000年   13篇
  1999年   5篇
  1998年   12篇
  1997年   2篇
  1996年   8篇
  1995年   10篇
  1994年   12篇
  1993年   5篇
  1992年   1篇
  1991年   2篇
  1990年   6篇
  1989年   2篇
  1988年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
排序方式: 共有2119条查询结果,搜索用时 0 毫秒
41.
Recently ionic liquids(ILs) are introduced as novel dual function gas hydrate inhibitors. However, no desired gas hydrate inhibition has been reported due to poor IL selection and/or tuning method. Trial error as well as selection based on existing literature are the methods currently employed for selecting and/or tuning ILs. These methods are probabilistic, time consuming, expensive and may not result in selecting high performance ILs for gas hydrate mitigation. In this work, COSMO-RS is considered as a prescreening tool of ILs for gas hydrate mitigation by predicting the hydrogen bonding energies(E_(HB)) of studied IL inhibitors and comparing the predicted E_(HB) to the depression temperature(?) and induction time. Results show that, predicted EHBand chain length of ILs strongly relate and significantly affect the gas hydrate inhibition depression temperature but correlate moderately(R = 0.70) with average induction time in literature. It is deduced from the results that, ? increases with increasing IL EHBand/or decreases with increasing chain length. However, the cation–anion pairing of ILs also affects IL gas hydrate inhibition performance. Furthermore, a visual and better understanding of IL/water behavior for gas hydrate inhibition in terms of hydrogen bond donor and acceptor interaction analysis is also presented by determining the sigma profile and sigma potential of studied IL cations and anions used for gas hydrate mitigation for easy IL selection.  相似文献   
42.
Plasticized poly(lactic acid) (PLA)‐based nanocomposites filled with graphene nanoplatelets (xGnP) and containing poly(ethylene glycol) (PEG) and epoxidized palm oil (EPO) with ratio 2 : 1 (2P : 1E) as hybrid plasticizer were prepared by melt blending method. The key objective is to take advantage of plasticization to increase the material ductility while preserving valuable stiffness, strength, and toughness via addition of xGnP. The tensile modulus of PLA/2P : 1E/0.1 wt % xGnP was substantially improved (30%) with strength and elasticity maintained, as compared to plasticized PLA. TGA analysis revealed that the xGnP was capable of acting as barrier to reduce thermal diffusion across the plasticized PLA matrix, and thus enhanced thermal stability of the plasticized PLA. Incorporation of xGnP also enhanced antimicrobial activity of nanocomposites toward Escherichia coli, Salmonella typhimurium, Staphylococcus aureus, and Listeria monocytogenes. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41652.  相似文献   
43.
Nickel zinc ferrite (Ni-ZnFe2O4)-filled natural rubber (NR) composite was prepared at various loading of ferrite. The tensile properties included in this study were tensile strength, tensile modulus and elongation at break. The tensile strength and elongation at break of the composites increased up to 40 parts per hundred rubber (phr) of ferrite and then decreased at higher loading whereas the tensile modulus was increased gradually with increasing of ferrite loading. Scanning electron microscopy (SEM) was used to determine the wettability of filler in rubber matrix. From the observation, the increase of filler loading reduced the wettability of the filler. Thermal stability of the composites was conducted by using a thermogravimetry analyser (TGA). The incorporation of ferrite in NR composites enhanced the thermal stability of NR composites. The swelling test results indicate that the swelling percentage of the composites decreased by increasing of ferrite loading. The initial permeability, μi and quality factor, Q of magnetic properties of NR composites achieved maximum value at 60 phr of ferrite loading for frequency range between 5000–40,000 kHz. The maximum impedance, Z max of the NR composites was at the highest value at 80 phr ferrite loading for frequency range between 200–800 MHz.  相似文献   
44.
Hydrogen production via water electrolysis was studied under the effect of magnetic and optical field. A diode solid state laser at blue, green and red were utilized as optical field source. Magnetic bar was employed as external magnetic field. The green laser has shown a greatest effect in hydrogen production due to its non-absorbance properties in the water. Thus its intensity of electrical field is high enough to dissociation of hydronium and hydroxide ions during orientation toward polarization of water. The potential to break the autoprotolysis and generate the auto-ionization is the mechanism of optical field to reveal the hydrogen production in water electrolysis. The magnetic field effect is more dominant to enhance the hydrogen production. The diamagnetic property of water has repelled the present of magnetic in water. Consequently the water splitting occurs due to the repulsive force induced by the external magnetic field. The magnetic distributed more homogenous in the water to involve more density of water molecule. As a result hydrogen production due to magnetic field is higher in comparison to optical field. However the combination both fields have generated superior effect whereby the hydrogen yields nine times higher in comparison to conventional water electrolysis.  相似文献   
45.
Tree nuts are rich in macro and micronutrients, phytochemicals, tocopherols and phenolic compounds. The development of nut spreads would potentially increase the food uses of nuts and introduce consumers with a healthier, non-animal breakfast snack food. Nut spreads are spreadable products made from nuts that are ground into paste. Roasting and milling (particle size reduction) are two important stages for the production of nut spreads that affected the textural, rheological characteristic and overall quality of the nut spread. Textural, color, and flavor properties of nut spreads play a major role in consumer appeal, buying decisions and eventual consumption. Stability of nut spreads is influenced by its particle size. Proper combination of ingredients (nut paste, sweetener, vegetable oil and protein sources) is also required to ensure a stable nut spread product is produced. Most of the nut spreads behaved like a non-Newtonian pseudo-plastic fluid under yield stress which help the producers how to start pumping and stirring of the nut spreads. Similar to other high oil content products, nut spreads are susceptible to autoxidation. Their oxidation can be controlled by application of antioxidants, using processing techniques that minimize tocopherol and other natural antioxidant losses.  相似文献   
46.
This paper deals with the measurement of surface temperature on metal powder during the laser consolidation process with two-color pyrometer. Additionally, the aspect of selective laser sintering (SLS) and selective laser melting (SLM) of metal powder is visualized with high speed video camera. As a result, the surface temperature during the laser irradiation was ranged 1520–1810 °C and the consolidation phenomena was classified according to the melting point of metal powder. The metal powder at the heating process cohered intermittently to the melt pool although the laser beam was continuously irradiated to the powder surface.  相似文献   
47.
There is a need for a better approach to measure construction productivity rigorously, multilaterally, longitudinally and decomposed into its components. In response, this paper offers a robust approach to analysing construction productivity at the firm level that has been lacking in the industry to date, by measuring the Total Factor Productivity (TFP) of 37 public-listed Malaysian construction firms over 14 years (2003–2016), based on the Färe-Primont index. In comparing different groups of building, civil and specialist construction firms, this is the first application of a meta-frontier framework to capture the technological gaps involved. Based on the construction firms’ financial data, it is found that TFP improvement generally occurs due to Technical Efficiency (TE) and Scale-Mix Efficiency (SME) (largely scope economies), and significant technological gaps exist among different groups. Moreover, the industry suffered a decline in technologically related production environment over the period – prompting the conclusion that long-term policy engagement should focus on technological improvements. The paper provides a robust approach to analysing construction productivity at the firm level that also can be used for accessing productivity components and technological gaps in construction and other industries.  相似文献   
48.
In this study, the effect of inoculant composition and nodularisation treatment temperature on recalescence temperature (TER) and undercooling temperature (TEU) in SG iron has been studied by using thermal analysis. 0·1, 0·2 and 0·3 wt-% of three types of inoculants Ca,Ce,Al–FeSi, Ca,Sr,Al–FeSi and Ca,Ba,Al–FeSi were used as so called stream inoculation. Ca,Ce,Al–FeSi was found to be the most potent one in reducing both recalescence (?T r ) and eutectic undercooling (?T). The nodule count has also been found higher in Ca,Ce,Al–FeSi inoculated SG iron samples compared to other two inoculants. It has been observed that higher the nodule count lower is the ?T r and ?T and vice versa. The recalescence and shrinkage relationship of 24 heats of differential case castings has been established; it was observed that the number of castings containing shrinkage in respective heats increase as the recalescence and nodularisation treatment temperature increases.  相似文献   
49.
In this paper, the fabrication of novel burnable absorber fuel concepts with oxide pellets, containing either a lumped Gd2O3 rod, a mini‐pellet, or a spherical particle in the centerline of the oxide pellet, is investigated to propose the lumped Gd2O3 burnable absorber fuel concept to improve nuclear fuel performance with longer fuel cycle lengths and better fuel utilization. The unique characteristic of the lumped Gd2O3 burnable absorber fuel is its high spatial self‐shielding factor that reduces its burnout rate and, therefore, improves the reactivity control. Oxide pellets containing lumped Gd2O3 were fabricated by using a combination of cold isostatic pressing and microwave sintering at 1500°C to understand the potential technical issues in the fabrication of duplex burnable absorber fuel. The effect of the sintering temperature on the densification and phase transformation of 8 wt.% yttria‐stabilized zirconia, a surrogate for UO2, was investigated. Spherical Gd2O3 particles were fabricated by the drip casting of a Gd2O3‐based Na alginate solution. The fabrication of duplex oxide pellets by using presintered Gd2O3 mini‐pellets resulted in internal cracks at the interface between the Gd2O3 and 8 wt.% yttria‐stabilized zirconia layers because of the mismatch of their densification. However, the formation of interfacial cracks was eliminated by controlling the initial sintered density of the lumped Gd2O3.  相似文献   
50.
There is a growing concern over the food safety issue related to increased incidence of cooking oil adulteration with recycled cooking oil (RCO). The objective of this study was to detect fresh palm olein (FPO) adulteration with RCO using fatty acid composition (FAC) and Fourier-transform infrared spectroscopy (FTIR) spectral analyses combined with chemometrics. RCO prepared in the laboratory was mixed with FPO in the proportion ranged from 1% to 50% (v/v) to obtain the adulterated oil samples (AO). FACs for FPO, RCO, and AO were determined using gas chromatography equipped with a flame ionization detector (GC-FID). The compositions of most fatty acids in RCO lied within the normal ranges of Codex standard, except for C8:0, C10:0, C11:0, C15:0, trans C18:1, and polyunsaturated fatty acids (PUFAs), C20:5. PUFAs showed a consistent decreasing trend with increasing magnitude of change with respect to increasing adulteration level and thus might be a good indicator for detecting FPO adulteration with RCO. The evaluation parameters (coefficient of determination, root mean standard error) of the FTIR-partial least square (PLS) model of palm oil adulteration with recycled oil are R2 = 0.995 and 3.25, respectively. For FTIR spectral analysis, the distinct variations in spectral regions and aberrations in characteristic bands between FPO and RCO were observed. The optimized PLS calibration model developed from normal spectral of the combined region at 3602–3398, 3016–2642, and 1845–650 cm?1 overpredict the adulteration level. On the other hand, the discriminant analysis classification model was able to classify the FPO and AO into two distinct groups. Improvement of the principles of combined techniques in authenticating AO from fresh oil is beneficial as a guideline to detect adulteration in cooking oil.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号