首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5592篇
  免费   285篇
  国内免费   53篇
电工技术   78篇
综合类   13篇
化学工业   1158篇
金属工艺   128篇
机械仪表   164篇
建筑科学   123篇
矿业工程   29篇
能源动力   295篇
轻工业   461篇
水利工程   59篇
石油天然气   42篇
无线电   639篇
一般工业技术   1281篇
冶金工业   549篇
原子能技术   66篇
自动化技术   845篇
  2024年   24篇
  2023年   119篇
  2022年   291篇
  2021年   438篇
  2020年   266篇
  2019年   297篇
  2018年   315篇
  2017年   271篇
  2016年   264篇
  2015年   174篇
  2014年   224篇
  2013年   430篇
  2012年   259篇
  2011年   288篇
  2010年   200篇
  2009年   161篇
  2008年   152篇
  2007年   135篇
  2006年   118篇
  2005年   85篇
  2004年   65篇
  2003年   79篇
  2002年   61篇
  2001年   52篇
  2000年   49篇
  1999年   64篇
  1998年   155篇
  1997年   129篇
  1996年   98篇
  1995年   73篇
  1994年   61篇
  1993年   56篇
  1992年   36篇
  1991年   43篇
  1990年   35篇
  1989年   31篇
  1988年   25篇
  1987年   29篇
  1986年   34篇
  1985年   32篇
  1984年   26篇
  1983年   29篇
  1982年   13篇
  1981年   13篇
  1980年   11篇
  1978年   16篇
  1977年   17篇
  1976年   23篇
  1973年   8篇
  1972年   8篇
排序方式: 共有5930条查询结果,搜索用时 15 毫秒
81.
The relation of epidemiology and ethics is discussed from a Third World perspective, including the following issues: the structure and dynamics of a Third World Society; the nature of the relationship between the First World "islanders" in the Third World and their counterparts in the First World, and between the "islanders" and their fellow citizens; the inner dynamics of Third World researchers; the different knowledge systems; and the role of institutions in the Third World and the First World.  相似文献   
82.
The deep learning model encompasses a powerful learning ability that integrates the feature extraction, and classification method to improve accuracy. Convolutional Neural Networks (CNN) perform well in machine learning and image processing tasks like segmentation, classification, detection, identification, etc. The CNN models are still sensitive to noise and attack. The smallest change in training images as in an adversarial attack can greatly decrease the accuracy of the CNN model. This paper presents an alpha fusion attack analysis and generates defense against adversarial attacks. The proposed work is divided into three phases: firstly, an MLSTM-based CNN classification model is developed for classifying COVID-CT images. Secondly, an alpha fusion attack is generated to fool the classification model. The alpha fusion attack is tested in the last phase on a modified LSTM-based CNN (CNN-MLSTM) model and other pre-trained models. The results of CNN models show that the accuracy of these models dropped greatly after the alpha-fusion attack. The highest F1 score before the attack was achieved is 97.45 And after the attack lowest F1 score recorded is 22%. Results elucidate the performance in terms of accuracy, precision, F1 score and Recall.  相似文献   
83.

In communication industry one of the most rapidly growing area is wireless technology and its applications. The efficient access to radio spectrum is a requirement to make this communication feasible for the users that are running multimedia applications and establishing real-time connections on an already overcrowded spectrum. In recent times cognitive radios (CR) are becoming the prime candidates for improved utilization of available spectrum. The unlicensed secondary users share the spectrum with primary licensed user in such manners that the interference at the primary user does not increase from a predefined threshold. In this paper, we propose an algorithm to address the power control problem for CR networks. The proposed solution models the wireless system with a non-cooperative game, in which each player maximize its utility in a competitive environment. The simulation results shows that the proposed algorithm improves the performance of the network in terms of high SINR and low power consumption.

  相似文献   
84.
Scalability is one of the most important quality attribute of software-intensive systems, because it maintains an effective performance parallel to the large fluctuating and sometimes unpredictable workload. In order to achieve scalability, thread pool system (TPS) (which is also known as executor service) has been used extensively as a middleware service in software-intensive systems. TPS optimization is a challenging problem that determines the optimal size of thread pool dynamically on runtime. In case of distributed-TPS (DTPS), another issue is the load balancing b/w available set of TPSs running at backend servers. Existing DTPSs are overloaded either due to an inappropriate TPS optimization strategy at backend servers or improper load balancing scheme that cannot quickly recover an overload. Consequently, the performance of software-intensive system is suffered. Thus, in this paper, we propose a new DTPS that follows the collaborative round robin load balancing that has the effect of a double-edge sword. On the one hand, it effectively performs the load balancing (in case of overload situation) among available TPSs by a fast overload recovery procedure that decelerates the load on the overloaded TPSs up to their capacities and shifts the remaining load towards other gracefully running TPSs. And on the other hand, its robust load deceleration technique which is applied to an overloaded TPS sets an appropriate upper bound of thread pool size, because the pool size in each TPS is kept equal to the request rate on it, hence dynamically optimizes TPS. We evaluated the results of the proposed system against state of the art DTPSs by a client-server based simulator and found that our system outperformed by sustaining smaller response times.  相似文献   
85.
The recent research in biocompatible materials has been useful in replacing and supporting the fractured natural human bones/joints. Under some condition, negative reaction like release of ions from the bare metal toward the human body fluid leads to corrosion. In this proposed research paper, the biocompatibility of the laser surface-modified austenitic stainless steel (SS316L) and nickel-based superalloy (Inconel 718) was studied. The investigation on laser-modified surfaces is evaluated through electrochemical polarization analysis using simulated body fluid (SBF). The samples subjected to electrochemical polarization analysis were characterized by optical image analysis, SEM, EDS, and XRD analysis. It was inferred that laser surface-modified materials provided enhanced corrosion resistance and bare nickel alloy is more susceptible to corrosion by SBF.  相似文献   
86.
87.
This study focuses on the potential of hydrogen-rich syngas production by CO2 reforming of methane over Co/Pr2O3 catalyst. The Co/Pr2O3 catalyst was synthesized via wet-impregnation method and characterized for physicochemical properties by TGA, XRD, BET, H2-TPR, FESEM, EDX, and FTIR. The CO2 reforming of methane over the as-synthesized catalyst was studied in a tubular stainless steel fixed-bed reactor at feed ratio ranged 0.1–1.0, temperature ranged 923–1023 K, and gas hourly space velocity (GHSV) of 30,000 h?1 under atmospheric pressure condition. The catalyst activity studies showed that the increase in the reaction temperature from 923 to 1023 K and feed ratio from 0.1 to 1.0 resulted in a corresponding increase in the reactant’s conversion and the product’s yields. At 1023 K and feed ratio of 1.0, the activity of the Co/Pr2O3 catalyst climaxed with CH4 and CO2 conversions of 41.49 and 42.36 %. Moreover, the catalyst activity at 1023 K and feed ratio of 1.0 resulted in the production of H2 and CO yields of 40.7 and 40.90 %, respectively. The syngas produced was estimated to have H2:CO ratio of 0.995, making it suitable as chemical building blocks for the production of oxygenated fuel and other value-added chemicals. The used Co/Pr2O3 catalyst which was characterized by TPO, XRD, and SEM-EDX show some evidence of carbon formation and deposition on its surface.  相似文献   
88.
Ball end magnetorheological finishing is a unique process that utilizes a magnetically controlled ball of polishing fluid at the tip of the rotating tool to finish workpiece of different materials and shapes. The aim of this research is to study the effect of polishing fluid volume on finishing spot size and the surface finish associated with it. A magnetostatic simulation is done to find the variation of flux density in the working gap and on the workpiece surface. The maximum limit of the polishing fluid volume is selected on the basis of area of threshold magnetic flux density (minimum value required for finishing) region on the workpiece surface. The surface characteristics and the diameter of the finished spot are analyzed by varying the fluid volume. The surface obtained with high fluid volume is poorly finished and has scratch marks as the excess fluid flows out from the working gap and forms a thick ring at the periphery of the tool tip. Contrary to this, if the fluid volume is too less, then it merely rotates over the workpiece surface without causing any finishing action. An optimum range of fluid volume produces a good quality surface finish with constant finished spot size.  相似文献   
89.
Nature instigates researchers significantly in imitating to engender comparable properties using artificial methods, which unlocks developing trend in material science and engineering progress. Fabricating graded‐index nanostructures is an effective approach to tune and generate similar properties artificially such as the moth's eye antireflectance (AR) or lotus like superhydrophobicity. Herein, Bilayer AR coatings with periodically arranged SiO2 hierarchical nanostructures resembling moth eyes are fabricated on dense SiO2 matrix base layer using the versatile route of glancing angle deposition technique (GLAD). The refractive indices of monolayer SiO2 are tuned from 1.46 to 1.08 by changing the deposition angle (α) from 0 to 88°. The fabricated bilayer SiO2 AR (BSAR) film possess high optical omnidirectional broadband transparency and tunability at a desired wavelength range showing <1% reflectance. The present AR design is flexible and practically applicable to various supporting substrate materials (η varies from 1.45 to 1.9). Furthermore, the omnidirectional BSAR films show multiple functions including enhanced mechanical strength, the thermal stability (up to 300 °C), and hydrophobic capability with a water contact angle (CA) of 147° to withstand under humid environment. This multipurpose coating provides an intriguing route in optics field for imminent research.
  相似文献   
90.
Soft conductive materials should enable large deformation while keeping high electrical conductivity and elasticity. The graphene oxide (GO)‐based sponge is a potential candidate to endow large deformation. However, it typically exhibits low conductivity and elasticity. Here, the highly conductive and elastic sponge composed of GO, flower‐shaped silver nanoparticles (AgNFs), and polyimide (GO‐AgNF‐PI sponge) are demonstrated. The average pore size and porosity are 114 µm and 94.7%, respectively. Ag NFs have thin petals (8–20 nm) protruding out of the surface of a spherical bud (300–350 nm) significantly enhancing the specific surface area (2.83 m2 g?1). The electrical conductivity (0.306 S m?1 at 0% strain) of the GO‐AgNF‐PI sponge is increased by more than an order of magnitude with the addition of Ag NFs. A nearly perfect elasticity is obtained over a wide compressive strain range (0–90%). The strain‐dependent, nonlinear variation of Young's modulus of the sponge provides a unique opportunity as a variable stiffness stress sensor that operates over a wide stress range (0–10 kPa) with a high maximum sensitivity (0.572 kPa?1). It allows grasping of a soft rose and a hard bottle, with the minimal object deformation, when attached on the finger of a robot gripper.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号