首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   103篇
  免费   3篇
化学工业   30篇
金属工艺   1篇
建筑科学   2篇
能源动力   19篇
轻工业   32篇
无线电   3篇
一般工业技术   12篇
冶金工业   2篇
自动化技术   5篇
  2024年   1篇
  2023年   2篇
  2022年   1篇
  2021年   3篇
  2020年   6篇
  2019年   3篇
  2018年   6篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
  2014年   4篇
  2013年   14篇
  2012年   12篇
  2011年   8篇
  2010年   9篇
  2009年   6篇
  2008年   5篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2004年   3篇
  2002年   1篇
  2001年   1篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1994年   1篇
  1993年   1篇
  1987年   1篇
排序方式: 共有106条查询结果,搜索用时 0 毫秒
101.
Moisture sorption isotherms of grapes, apricots, apples and potatoes were determined at 30°C, 45°C, and 60°C using the standard, static-gravimetric method. Six two-parameter and five three-parameter sorption models were tested to fit the experimental data. A nonlinear regression analysis method was used to evaluate the constants of the sorption equations. The Halsey equation gave the best fit to the experimental sorption data for all materials tested over the range of temperatures and water activities investigated. The GAB model gave also the closest fit to the sorption data for potatoes and grapes. The agreement between experimental and predicted values of these models was found to be satisfactory. The isosteric heat of desorption and adsorption of water determined from the equilibrium data using the Clausius-Clapeyron equation.  相似文献   
102.
ABSTRACT: Pectin methylesterase (PME) causes considerable softening in intermediate-moisture (IM) figs rehydrated at 30°C and cold stored at 28% to 29% moisture content. Rehydration of figs at 80°C for 16 min inactivated PME partially (25–30%), but this did not prevent the softening over 3 mo of cold storage. Also, heating did not reduce the microbial load of figs significantly and increased their browning. In contrast, rehydration of figs 1st in 2.5% H2O2 at 80°C for 8 min and then in water at 80°C for 8 min reduced the microbial load of IM figs significantly, turned their brown color to yellow-light brown, and maintained their desired textural properties. The residual H2O2 in IM figs decomposed in 3 or 1.5 wk by the in situ catalase or by application of the iron (II) sulfate-ascorbic acid residue elimination method, respectively. Hot rehydration did not affect the antioxidant activity of IM figs, but treatment of figs with H2O2 increased their antioxidant activity slightly. These results indicate that the hot rehydration of figs in the presence of H2O2 and cold storage may be applied to obtain safe and SO2-free light-colored IM fig products.  相似文献   
103.
Process simulation and modeling works are very important to determine novel design and operation conditions. In this study; hydrogen production from synthesis gas obtained by gasification of lignocellulosic biomass is investigated. The main motivation of this work is to understand how biomass is converted to hydrogen rich synthesis gas and its environmentally friendly impact. Hydrogen market development in several energy production units such as fuel cells is another motivation to realize these kinds of activities. The initial results can help to contribute to the literature and widen our experience on utilization of the CO2 neutral biomass sources and gasification technology which can develop the design of hydrogen production processes. The raw syngas is obtained via staged gasification of biomass, using bubbling fluidized bed technology with secondary agents; then it is cleaned, its hydrocarbon content is reformed, CO content is shifted (WGS) and finally H2 content is separated by the PSA (Pressure Swing Adsorption) unit. According to the preliminary results of the ASPEN HYSYS conceptual process simulation model; the composition of hydrogen rich gas (0.62% H2O, 38.83% H2, 1.65% CO, 26.13% CO2, 0.08% CH4, and 32.69% N2) has been determined. The first simulation results show that the hydrogen purity of the product gas after PSA unit is 99.999% approximately. The mass lower heating value (LHVmass) of the product gas before PSA unit is expected to be about 4500 kJ/kg and the overall fuel processor efficiency has been calculated as ~93%.  相似文献   
104.
The perspective of this study describes a new concept for ammonia borane (NH3BH3, AB) in the form of pellet composited with CoB catalyst to use as a hydrogen storage medium. For the purpose of this, hydrogen storage capacity and physical-chemical properties of composite pellet are examined and tested to investigate effects of specified environmental conditions by exposing pellets in temperature from 22 °C to 80 °C in a long period of time (1 day–4 months). A statistical strategy is provided to detail the investigation for significant differences between holding conditions and their interactions. These results suggest that the changing in holding time is more important than the temperature. The general point of view, there is no change in hydrogen storage properties when the composite pellets held at low temperature about 22 °C for 3 months, and the same trend is also preserved when the composites are kept at the higher temperature for a week. It is concluded that the composite pellets shown performance at hydrogen storage with easy handling and controlled hydrogen generation for on-board energy applications.  相似文献   
105.
106.
Air impingement method has been widely used in a variety of industrial applications, such as textile and paper drying, turbine cooling, and glass quenching, because it is an efficient technology with high heat and mass transfer rates. This technology has received increasing interest in the field of food processing over the last two decades, such as drying, baking, blanching, freezing, and thawing. In a food processing equipment using air impingement, jets of high-velocity air (with speeds of 10–50 m/s) are directed at a food product. The performance of the system is influenced by several critical elements, including jet velocity, nozzle array diameter and layout, jet distance, and boundary layer characteristics. The use of computational fluid dynamics, an emerging tool, has been shown to be valuable in the analysis of fluid flow and heat and mass transfer in jet impingement systems. The physical properties of impinging jets, such as turbulent mixing in the free jet zone, stagnation, boundary layer formation, recirculation, and their interactions with food products in terms of heat and mass transfer, have been discussed in this article. The benefits and disadvantages of air jet impingement technology in different food processing applications together with potential trends for improving impingement technology performance were identified and discussed. This review not only contributes to a better understanding of the research status of impingement technology on food processing but also triggers new research opportunities in this field in order to provide more healthy and nutritious food in a more sustainable way to the world's growing population.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号