首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   9篇
电工技术   1篇
化学工业   49篇
金属工艺   1篇
机械仪表   7篇
建筑科学   1篇
水利工程   1篇
无线电   8篇
一般工业技术   16篇
冶金工业   3篇
原子能技术   1篇
自动化技术   12篇
  2023年   5篇
  2022年   5篇
  2021年   2篇
  2020年   5篇
  2019年   3篇
  2018年   4篇
  2017年   3篇
  2016年   6篇
  2015年   2篇
  2014年   8篇
  2013年   4篇
  2012年   7篇
  2011年   5篇
  2010年   2篇
  2009年   6篇
  2008年   2篇
  2007年   3篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2003年   3篇
  2001年   3篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1989年   1篇
  1987年   1篇
  1980年   1篇
  1973年   1篇
  1970年   1篇
排序方式: 共有100条查询结果,搜索用时 17 毫秒
91.
We demonstrate microstructuring of chalcogenide fiber facets in order to obtain enhanced transmission due to the antireflective properties of the microstructured surfaces. A variety of molding approaches have been investigated for As(2)S(3) and As(3)Se(3) fibers. Transmission as high as 97% per facet was obtained in the case of As(2)S(3) fiber, compared to the native, Fresnel-loss limited, transmission of 83%.  相似文献   
92.
This work is concerned with several issues related to the rheological behavior of poly(4‐vinylpyridine)/aluminum nitride (AlN) nanocomposites. The composites are prepared by solution processing combined with ultrasonication and magnetic stirring. To understand the percolated structure, the nanocomposites are characterized via a set of rheological, dielectric, and thermal conductivity analyses. The nanoparticle networks are sensitive to the steady shear deformation particularly at low shear rates, where a shear‐thinning domain is observed. The rheological measurements revealed also that the activation energy is significantly lower at high nanofiller loadings suggesting stronger AlN interactions. The changes in the terminal behavior of shear moduli are the result of variations in composite elasticity determined by the percolation network. The flocculation and percolation thresholds estimated from the rheological moduli dependence on AlN loading are correlated with the dielectric constant values. Thermal conductivity is determined from a new theoretical model involving, besides the contribution of each phase, both percolation processes and the shape of the nanofiller. POLYM. COMPOS., 35:1543–1552, 2014. © 2013 Society of Plastics Engineers  相似文献   
93.
Gold nanochains/nanowires were prepared by simultaneously reducing the gold salt in the presence of stabilizing biomolecules —L-aspartate and L-lysine, Collagen—that acts as capping agent and as a template in the formation of two-dimensional gold nanostructures. L-aspartate and L-lysine were used in order to form nanochains due to their ability to cap gold nanoparticles through an oriented attachment mechanism that leads to the formation of one-dimensional nanostructures. The formation of the nanowires was controlled by reducing the gold salt onto the surface of the collagen template. Transmission electron microscopy (TEM) and x-ray powder diffraction were employed in order to demonstrate the morphological and structural properties of the nanowires. In order to provide evidence of the possible applications of gold nanostructures as biocompatible substrates for tissue engineering, mesenchymal stem cells were cultured in their presence. MTT proliferation assays, as well as immunohistochemistry assays, were performed. The experiments demonstrated that each nanostructure stimulates cell proliferation, but better results were obtained in the case of collagen. Moreover, we noticed that the nanostructures are tracked inside of the cells, most likely in the perinuclear region of the stem cells.  相似文献   
94.
The current study describes the synthesis, physicochemical characterization and cytotoxicity evaluation of a new series of pyrrole derivatives in order to identify new bioactive molecules. The new pyrroles were obtained by reaction of benzimidazolium bromide derivatives with asymmetrical acetylenes in 1,2-epoxybutane under reflux through the Huisgen [3 + 2] cycloaddition of several ylide intermediates to the corresponding dipolarophiles. The intermediates salts were obtained from corresponding benzimidazole with bromoacetonitrile. The structures of the newly synthesized compounds were confirmed by elemental analysis, spectral techniques (i.e., IR, 1H-NMR and 13C-NMR) and single-crystal X-ray analysis. The cytotoxicity of the synthesized compounds was evaluated on plant cells (i.e., Triticum aestivum L.) and animal cells using aquatic crustaceans (i.e., Artemia franciscana Kellogg and Daphnia magna Straus). The potential antitumor activity of several of the pyrrole derivatives was studied by performing in vitro cytotoxicity assays on human adenocarcinoma-derived cell lines (i.e., LoVo (colon), MCF-7 (breast), and SK-OV-3 (ovary)) and normal human umbilical vein endothelial cells (HUVECs). The obtained results of the cytotoxicity assessment indicated that the tested compounds had nontoxic activity on Triticum aestivum L., while on Artemia franciscana Kellogg nauplii, only compounds 2c and 4c had moderate toxicity. On Daphnia magna, 4b and 4c showed high toxicity; 2a, 2b, and 2c moderate to high toxicity; only 4a and 4d were nontoxic. The compound-mediated cytotoxicity assays showed that several pyrrole compounds demonstrated dose- and time-dependent cytotoxic activity against all tested tumor cell lines, the highest antitumor properties being achieved by 4a and its homologue 4d, especially against LoVo colon cells.  相似文献   
95.
Lower extremity artery disease (LEAD), caused by atherosclerotic obstruction of the arteries of the lower limb extremities, has exhibited an increase in mortality and morbidity worldwide. The phenotypic variability of LEAD is correlated with its complex, multifactorial etiology. In addition to traditional risk factors, it has been shown that the interaction between genetic factors (epistasis) or between genes and the environment potentially have an independent role in the development and progression of LEAD. In recent years, progress has been made in identifying genetic variants associated with LEAD, by Genome-Wide Association Studies (GWAS), Whole Exome Sequencing (WES) studies, and epigenetic profiling. The aim of this review is to present the current knowledge about the genetic factors involved in the etiopathogenic mechanisms of LEAD, as well as possible directions for future research. We analyzed data from the literature, starting with candidate gene-based association studies, and then continuing with extensive association studies, such as GWAS and WES. The results of these studies showed that the genetic architecture of LEAD is extremely heterogeneous. In the future, the identification of new genetic factors will allow for the development of targeted molecular therapies, and the use of polygenic risk scores (PRS) to identify individuals at an increased risk of LEAD will allow for early prophylactic measures and personalized therapy to improve their prognosis.  相似文献   
96.
Vascular anomalies (VAs) are morphogenesis defects of the vascular system (arteries, capillaries, veins, lymphatic vessels) singularly or in complex combinations, sometimes with a severe impact on the quality of life. The progress made in recent years with the identification of the key molecular pathways (PI3K/AKT/mTOR and RAS/BRAF/MAPK/ERK) and the gene mutations that lead to the appearance of VAs has allowed the deciphering of their complex genetic architecture. Understanding these mechanisms is critical both for the correct definition of the phenotype and classification of VAs, as well as for the initiation of an optimal therapy and the development of new targeted therapies. The purpose of this review is to present in synthesis the current data related to the genetic factors involved in the etiology of VAs, as well as the possible directions for future research. We analyzed the data from the literature related to VAs, using databases (Google Scholar, PubMed, MEDLINE, OMIM, MedGen, Orphanet) and ClinicalTrials.gov. The obtained results revealed that the phenotypic variability of VAs is correlated with genetic heterogeneity. The identification of new genetic factors and the molecular mechanisms in which they intervene, will allow the development of modern therapies that act targeted as a personalized therapy. We emphasize the importance of the geneticist in the diagnosis and treatment of VAs, as part of a multidisciplinary team involved in the management of VAs.  相似文献   
97.
The optical range of localized surface plasmon resonance (LSPR) is extended into the infrared region, thanks to the development of highly doped semiconductor nanocrystals. Particularly, the near-infrared (NIR) range holds a significant interest in managing solar radiation. However, practical applications necessitate the arrangement of particles, which is known to possibly impact their optical properties through LSPR coupling effects. How such coupling modifies the LSPR response in semiconductor hosts remains largely unexplored. In this study, a protocol for producing composite coatings composed of cesium-doped tungsten bronze nanocrystals embedded in a silica matrix is presented. Achieving individual dispersion of nanocrystals is made possible through careful selection of a surface polyglycerol ligand exchange. This allows to tune the interparticle distance by adjusting the nanocrystal volume fraction in the composite. The findings demonstrate that LSPR coupling effects significantly influence the LSPR intensity of nanocrystals in the composite when the nanocrystal-to-nanocrystal distance matches their size. Beyond elucidating the LSPR coupling effect, this study provides insights into the potential use of Cs-HTB nanocrystals for solar control applications. Through the optimization of morphology and film structure, remarkable selectivity is obtained in terms of maintaining good transparency in the visible range while achieving high absorption in the NIR.  相似文献   
98.
Two photon polymerisation using direct laser writing is a burgeoning field of research, with recent focus being placed on bringing added value to microstructures, by incorporating soft, responsive polymers. Moving to the micron-scale can have a profound impact on such stimuli-responsive materials, whose speed of actuation can be increased many-fold compared to their mm-scale counterparts. Here, the fabrication of submicron 2D photonic structures, based on a vapor-responsive photoresist with a refractive index <1.55, in the visible wavelength range. The fabricated concentric spiral arrays are evaluated for their feasibility as vapor sensors by testing spectral and structural color reproducibility and reversibility under water, ethanol, isopropanol, and acetone vapors. This approach allows for the realization of predictable uniform color displays that can be modulated upon stimuli response. The transmitted colour in the dry and hydrated states can be accurately modelled. This knowledge is used to design and demonstrate structures for cloaking and image transformation. Such capability can be used for encryption and anti-counterfeiting applications.  相似文献   
99.
Uptake and processing of antigens by antigen presenting cells (APCs) is a key step in the initiation of the adaptive immune response. Studying these processes is complex as the identification of low abundant exogenous antigens from complex cell extracts is difficult. Mass-spectrometry based proteomics – the ideal analysis tool in this case – requires methods to retrieve such molecules with high efficiency and low background. Here, we present a method for the selective and sensitive enrichment of antigenic peptides from APCs using click-antigens; antigenic proteins expressed with azidohomoalanine (Aha) in place of methionine residues. We here describe the capture of such antigens using a new covalent method namely, alkynyl functionalized PEG-based Rink amide resin, that enables capture of click-antigens via copper-catalyzed azide-alkyne [2 + 3] cycloaddition (CuAAC). The covalent nature of the thus formed linkage allows stringent washing to remove a-specific background material, prior to retrieval peptides by acid-mediated release. We successfully identified peptides from a tryptic digest of the full APC proteome containing femtomole amounts of Aha-labelled antigen, making this a promising approach for clean and selective enrichment of rare bioorthogonally modified peptides from complex mixtures.  相似文献   
100.
Stimuli-responsive hydrogels have attracted much attention owing to the versatility of their programmed response in offering intelligent solutions for biomimicry applications, such as soft robotics, tissue engineering, and drug delivery. To achieve the complexity of biomimetic structures, two photon polymerization (2PP) has provided a means of fabricating intricate 3D structures from stimuli-responsive hydrogels. Rapid swelling hydrogel microstructures are advantageous for osmotically driven stimuli-response, where actuation speed, that is reliant on the diffusion of analytes or bioanalytes, can be optimized. Herein, the flexibility of 2PP is exploited to showcase a novel sugar-responsive, phenylboronic acid-based photoresist. This offers a remarkable solution for achieving fast response hydrogel systems that have been often hindered by the volume-dependent diffusion times of analytes to receptor sites. A phenylboronic acid-based photoresist compatible with 2PP is presented to fabricate stimuli-responsive microstructures with accelerated response times. Moreover, microstructures with programmable actuation (i.e., bending and opening) are fabricated using the same photoresist within a one-step fabrication process. By combining the flexibility of 2PP with an easily adaptable photoresist, an accessible fabrication method is showcased for sophisticated and chemo-responsive 3D hydrogel actuators.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号