首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   134篇
  免费   6篇
电工技术   1篇
化学工业   40篇
金属工艺   5篇
机械仪表   9篇
建筑科学   4篇
能源动力   1篇
轻工业   8篇
石油天然气   1篇
无线电   3篇
一般工业技术   55篇
冶金工业   6篇
原子能技术   1篇
自动化技术   6篇
  2023年   1篇
  2021年   5篇
  2020年   4篇
  2019年   2篇
  2018年   4篇
  2017年   4篇
  2016年   1篇
  2015年   5篇
  2014年   4篇
  2013年   8篇
  2012年   1篇
  2011年   10篇
  2010年   7篇
  2009年   4篇
  2008年   4篇
  2007年   15篇
  2006年   9篇
  2005年   6篇
  2004年   6篇
  2003年   5篇
  2002年   7篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1998年   4篇
  1997年   3篇
  1995年   1篇
  1994年   3篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1985年   1篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1973年   1篇
  1957年   1篇
排序方式: 共有140条查询结果,搜索用时 15 毫秒
21.
There is a mass of detailed data concerning technical risk assessment methods and practices for underground work. But there is very little advice or guidance on the broad apportionment of the total risk between the various phases of an underground project or general advice on how risk might be managed. The Working Group has produced a generic Risk Budget covering five typical phases of an underground works project, which illustrates the heavy bias of risk towards the early phases. Using a practical example the report illustrates how project risk can be managed in a structured manner.  相似文献   
22.
In spite of having several advantages such as low cost, high chemical stability, and environmentally safe and benign synthetic as well as operational procedures, the full potential of carbon dots (CDs) is yet to be explored as photosensitizers due to the challenges associated with the fabrication of well‐arrayed CDs with many other photocatalytic heterostructures. In the present study, a unique combination of metal–organic framework (MOF)‐decorated zinc oxide (ZnO) 1D nanostructures as host and CDs as guest species are explored on account of their potential application in photoelectrochemical (PEC) water splitting performance. The synthetic strategy to incorporate well‐defined nitrogen‐doped carbon dots (N‐CDs) arrays onto a zeolitic imidazolate framework‐8 (ZIF‐8) anchored on ZnO 1D nanostructures allows a facile unification of different components which subsequently plays a decisive role in improving the material's PEC water splitting performance. Simple extension of such strategies is expected to offer significant advantages for the preparation of CD‐based heterostructures for photo(electro)catalytics and other related applications.  相似文献   
23.
Biomass energy conversion can be done in several ways-combustion, gasification, pyrolysis or anaerobic fermentation (biogas production). Each of these technologies has certain advantages and disadvantages from the point of view of energy generation for final consumption. In parallel, each of them has certain environmental impact in terms of emissions. The proposed EU directive prefers utilization of primary energy sources by application of highly efficient co-generation. Such change in assessment of energy effectiveness also means a completely new approach in assessment of current technologies. This report presents a guide for optimization of biomass energy conversion technologies assuming application of this new condition and minimal environmental impact. Specific values of emissions from particular technologies are used for the evaluation.  相似文献   
24.
In this work we evaluate the applicability of different atomic force microscopy (AFM) modes, such as Phase Shift Imaging, Atomic Force Acoustic Microscopy (AFAM) and Force Spectroscopy, for mapping of the distribution pattern of low-molecular-weight biomimetic groups on polymer biomaterial surfaces. Patterns with either random or clustered spatial distribution of bioactive peptide group derived from fibronectin were prepared by surface deposition of functional block copolymer nano-colloids and grafted with RGDS peptide containing the sequence of amino acids arginine–glycine–aspartic acid–serine (conventionally labeled as RGDS) and carrying biotin as a tag. The biotin-tagged peptides were labeled with 40 nm streptavidin-modified Au nanospheres. The peptide molecules were localized through the detection of bound Au nanospheres by AFM, and thus, the surface distribution of peptides was revealed. AFM techniques capable of monitoring local mechanical properties of the surface were proved to be the most efficient for identification of Au nano-markers. The efficiency was successfully demonstrated on two different patterns, i.e. random and clustered distribution of RGDS peptides on structured surface of the polymer biomaterial.  相似文献   
25.
Theoretical analysis of a process for low-temperature hydrogen production through steam methane reforming (SMR), based on the concept of adsorption-enhanced reaction, is presented. In the proposed process, mobile (pneumatically conveyed) adsorbent particles are passed through a stationary SMR catalyst monolith. Adsorbent regeneration is carried out in an external unit, thus decoupling the reaction and adsorbent regeneration steps, and allowing continuous operation. Heat for reaction is also supplied via the regeneration unit (via the thermal capacitance of the adsorbent), and thus effective energy integration is possible between the reactor and regenerator units. A mathematical model accounting for non-isothermal reaction and adsorption, mass transfer limited adsorption kinetics and non-linear (Langmuirian) adsorption equilibria, has been developed. The performance of the adsorptive reactor in terms of conversion enhancement is presented in this paper. Simulation results indicate considerable conversion enhancement through the use of a flowing adsorbent medium. The importance of the correct selection of operating parameters, i.e., adsorbent mass flow rate and temperature, on the process feasibility is also highlighted.  相似文献   
26.
This paper describes the results of experimental studies performed at the Joint Institute for Nuclear Research (JINR) in a (12)C ion beam with the primary nominal energy 500 MeV amu(-1). Data measured by means of a diamond detector and a spectrometer of linear energy transfer (LET) based on chemically etched track detectors are presented, analysed and discussed. LET spectra are also calculated by program SRIM.  相似文献   
27.
In this study, a dynamic model is presented for the granulation process, employing a three-dimensional population balance framework. As a first attempt to account for the multi-scale character of the process, the nucleation and aggregation kernels used in the population balance model are derived using mechanistic representations of the underlying particle physics such as wetting kinetics and energy dissipation effects. Thus, the fundamental properties of the powder and the liquid were used as parameters in the model to predict the granulator dynamics and granule properties. The population balance model is validated against experimental data from a calcite/PVOH-H2O recipe obtained using a lab-scale drum granulator for granule size, fractional binder content and porosity. A reasonably good agreement between experimental and simulation results were obtained for the granule size distribution under different experimental conditions. In addition, accurate model predictions were made for the evolution of the average properties (i.e., size, fractional binder content and porosity) for various operating conditions.  相似文献   
28.
Here, a facile and inexpensive approach to superhydrophobic polymer coatings is presented. The method involves the in situ polymerization of common monomers in the presence of a porogenic solvent to afford superhydrophobic surfaces with the desired combination of micro‐ and nanoscale roughness. The method is applicable to a variety of substrates and is not limited to small areas or flat surfaces. The polymerized material can be ground into a superhydrophobic powder, which, once applied to a surface, renders it superhydrophobic. The morphology of the porous polymer structure can be efficiently controlled by composition of the polymerization mixture, while surface chemistry can be adjusted by photografting. Morphology control is used to reduce the globule size of the porous architecture from micro down to nanoscale thereby affording a transparent material. The influence of both surface chemistry as well as the length scale of surface roughness on the superhydrophobicity is discussed.  相似文献   
29.
Enzymatic microreactors have been prepared in capillaries and on microfluidic chips by immobilizing trypsin on porous polymer monoliths consisting of 2-vinyl-4,4-dimethylazlactone, ethylene dimethacrylate, and acrylamide or 2-hydroxyethyl methacrylate. The azlactone functionalities react readily with amine and thiol groups of the enzyme to form stable covalent bonds. The optimized porous properties of the monoliths lead to very low back pressures enabling the use of simple mechanical pumping to carry out both the immobilization of the enzyme from its solution and the subsequent analyses of substrate solutions. The Michealis-Menten kinetic characteristics of the reactors were probed using a low molecular weight substrate: N-alpha-benzoyl-L-arginine ethyl ester. The effects of immobilization variables such as the concentration of trypsin in solution and percentage of azlactone functionalities in the monolith, as well as the effect of reaction time on the enzymatic activity, and of process variables such as substrate flow velocity and residence time in the reactor, were studied in detail. The proteolytic activity of the enzymatic microreactor on chip was demonstrated at different flow rates with the cleavage of fluorescently labeled casein used as a substrate. The excellent performance of the monolithic microreactor was also demonstrated with the digestion of myoglobin at the fast flow rate of 0.5 microL/min, which affords a residence time of only 11.7 s. The digest was then characterized using MALDI-TOF MS, and 102 out of 153 possible peptide fragments were identified giving a sequence coverage of 67%.  相似文献   
30.

Chemical cues, such as volatile organic compounds (VOCs), are often essential for insects to locate food. Relative to the volume of studies on the role of VOCs in insect-plant relationships, the role of VOCs emitted by dung and carrion in mediating the behavior of insect decomposers is understudied. Such relationships may provide a mechanistic understanding of the temporal axis of community assembly processes in decomposing insect communities. We focused on the temporal succession of volatiles released by cow dung pats and the potential influence on dung-inhabiting insects. Using gas chromatography/mass spectrometry we identified and quantified VOCs released from dung 1-h, and 1, 2 3, 5, and 7 d-old. We then related changes in VOCs to successional patterns of dung-inhabiting beetles and flies. We detected 54 VOCs which could be assigned to two successional groups, with chemical turnover in dung changing around day 2. The early successional group consisted primarily of aliphatic alcohols and phenols, and the late one of aliphatic esters, nitrogen- and sulfur-bearing compounds. Flies were predominately associated with the early successional group, mainly with 1-butanol. Beetles were associated predominately with the late-successional group, mainly with dimethyl trisulfide. This association between insect and chemical successional patterns supports the idea that habitat filtering drives the community assembly of dung-inhabiting insects on an aging resource. Moreover, the affinity of both insect groups to specific VOC groups provides a mechanistic explanation for the predictability of successional patterns found in dung-inhabiting insect communities.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号