首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45389篇
  免费   4181篇
  国内免费   1977篇
电工技术   2622篇
技术理论   7篇
综合类   2874篇
化学工业   7988篇
金属工艺   2576篇
机械仪表   2838篇
建筑科学   3576篇
矿业工程   1408篇
能源动力   1325篇
轻工业   3086篇
水利工程   777篇
石油天然气   2793篇
武器工业   310篇
无线电   4967篇
一般工业技术   5604篇
冶金工业   2172篇
原子能技术   551篇
自动化技术   6073篇
  2024年   248篇
  2023年   938篇
  2022年   1504篇
  2021年   2127篇
  2020年   1624篇
  2019年   1369篇
  2018年   1550篇
  2017年   1650篇
  2016年   1491篇
  2015年   1853篇
  2014年   2486篇
  2013年   2909篇
  2012年   3049篇
  2011年   3253篇
  2010年   2867篇
  2009年   2618篇
  2008年   2477篇
  2007年   2234篇
  2006年   2241篇
  2005年   1867篇
  2004年   1294篇
  2003年   1278篇
  2002年   1284篇
  2001年   1185篇
  2000年   941篇
  1999年   963篇
  1998年   797篇
  1997年   625篇
  1996年   571篇
  1995年   473篇
  1994年   413篇
  1993年   298篇
  1992年   230篇
  1991年   165篇
  1990年   129篇
  1989年   116篇
  1988年   80篇
  1987年   52篇
  1986年   60篇
  1985年   33篇
  1984年   34篇
  1983年   29篇
  1982年   21篇
  1981年   22篇
  1980年   14篇
  1979年   17篇
  1977年   6篇
  1976年   14篇
  1972年   5篇
  1970年   6篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
31.
Global decrease in crude oil resources and frequent crude oil leaks cause the energy crisis and ecological pollution. The absorption and release of leaked crude oil through absorption materials are a necessary process for environmental protection and recycling. In this article, a CO2-responsive olefin copolymer was obtained by copolymerization of styrene and an amine-containing olefin monomer. The structure of resultant copolymer was characterized by FTIR; thermal properties and CO2-responsive morphology changes were determined by DSC/TGA and SEM, respectively. Copolymers had certain absorption capacity for toluene with absorption rate up to 180.0%. The absorbed toluene could be released upon CO2 stimulation with desorption rate up to 84.6%. The CO2-responsive copolymer could be regenerated through a simple heating process and showed stable absorption–desorption performance even after being recycled for 4 times. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47439.  相似文献   
32.
Information‐Centric Networking (ICN) has been accepted to overcome some weaknesses of the current Internet architecture, showing that “what is being exchanged” is more important than “who are exchanging information.” Given the inadequate considerations on Quality of Service (QoS) and energy saving in ICN routing, we propose in this paper a routing algorithm to enhance the two aspects. At first, on one hand, Cauchy distribution is used as a fuzzy model to evaluate users' QoS requirements, such as bandwidth, delay, and error rate; on the other hand, we formulate energy saving problem to evaluate the green quality of routing algorithm. Then, we design a link selection approach by considering QoS and energy saving, which belongs to a multi‐objective decision problem resolved by intelligent drops algorithm. Finally, we implement the proposed algorithm and compare it with the famous adaptive forwarding mechanism in terms of some significant metrics, and the experimental results reveal that the proposed algorithm is more efficient.  相似文献   
33.
The densification behaviors of pure B4C and B4C-ZrO2 mixtures were compared during hot pressing. The results showed that in-situ formed ZrB2 effectively enhanced the densification process of B4C-ZrO2 mixtures, more significantly during the intermediate stage. Within the relative density ranging from 0.75 to 0.90, the B4C-15?wt%ZrO2 mixture (B15Z) achieved the maximum densification rate as twice much as that of pure B4C. The stress exponent n>3 indicated plastic deformation was the dominant densification mechanism of B15Z. The viscosities of plastic flow were evaluated using Murray-Rodger-William equation and the viscosity of B15Z was only a quarter of that in pure B4C. The sintering activation energy was calculated to be 305.9?kJ/mol for pure B4C and 197?kJ/mol for B15Z, respectively. It was proposed that the lower viscosity of plastic flow and activation energy accelerated the sliding and propagating motions of plastic flow, by which underlain the enhanced densification behaviors of B4C-ZrO2 mixtures.  相似文献   
34.
35.
The construction of nonlinear optical materials featuring asymmetric transmission of light is of great technological importance for various applications, including optical switching and optical power limiting. A significant challenge is the scalable fabrication of material candidates with good photochemical stability, high optical transmittance, and excellent optical limiting performance. Here, we present a nanocrystallization avenue for constructing hybrid optical limiting materials that exhibit ultrafast and robust optical limiting performance. The experimental results show that the controllable relaxation of a niobate glass may lead to the clustering of Nb-O units and contracting of the bandgap. It results in the notable improvement in nonlinear optical properties, including the enhanced saturation irradiance (380 GW/cm2), doubly increased nonlinear coefficient, and decreased limiting threshold (200 GW/cm2). Our results suggest a promising material that exhibits promising applications for protecting eyes and sensitive components from laser-induced damage.  相似文献   
36.
Directionally solidified microstructures of Al2O3-Er3Al5O12 eutectic and off-eutectic in situ composite ceramics were explored under abrupt-change pulling rate conditions. Corresponding temperature distributions and interface locations were studied. In eutectic composition, fluctuation of eutectic spacing occurred when the pulling rate increased abruptly. A gradually increase or abrupt increase in eutectic spacing was observed when the pulling rate decreased abruptly. In hypoeutectic and hypereutectic compositions, formation of the primary phases were suppressed when the pulling rate increased abruptly from 10?µm/s to 100?µm/s, while primary phases precipitated when the pulling rate decreased abruptly from 100?µm/s to 10?µm/s. The interface altitude decreased after the pulling rate increased abruptly, but increased after the pulling rate decreased abruptly. The liquid composition restriction (around the eutectic composition) at the eutectic interface plays an important role in the suppression of the primary dendrite and coupled eutectic oxides can be obtained in off-eutectic compositions even under higher solidification rate conditions.  相似文献   
37.
Rapid and sensitive point-of-care testing (POCT) is an extremely critical mission in practical applications, especially for rigorous military medicine, home health care, and in the third world. Here, we report a visual POCT method for adenosine triphosphate (ATP) detection based on Taylor rising in the corner of quadratic geometries between two rod surfaces. We discuss the principle of Taylor rising, demonstrating that it is significantly influenced by contact angle, surface tension, and density of the sample, which are controlled by ATP-dependent rolling circle amplification (RCA). In the presence of ATP, RCA reaction effectively suppresses Taylor-rising behavior, due to the increased contact angle, density, and decreased surface tension. Without addition of ATP, untriggered RCA reaction is favorable for Taylor rising, resulting in a significant height. With this proposed method, visual sensitive detection of ATP without the aid of other instruments is realized with only a 5 μL droplet, which has good selectivity and a low detection limit (17 nM). Importantly, this visual method provides a promising POCT tool for user-friendly molecular diagnostics.  相似文献   
38.
SiCf/PyC/SiC and SiCf/BN/SiC mini-composites comprising single tow SiC fibre-reinforced SiC with chemical vapor deposited PyC or BN interface layers are fabricated. The microstructure evolutions of the mini-composite samples as the oxidation temperature increases (oxidation at 1000, 1200, 1400, and 1600?°C in air for 2?h) are observed by scanning electron microscopy, energy dispersive spectrometry, and X-ray diffraction characterization methods. The damage evolution for each component of the as-fabricated SiCf/SiC composites (SiC fibre, PyC/BN interface, SiC matrix, and mesophase) is mapped as a three-dimensional (3D) image and quantified with X-ray computed tomography. The mechanical performance of the composites is investigated via tensile tests.The results reveal that tensile failure occurs after the delamination and fibre pull-out in the SiCf/PyC/SiC composites due to the volatilization of the PyC interface at high temperatures in the air environment. Meanwhile, the gaps between the fibres and matrix lead to rapid oxidation and crack propagation from the SiC matrix to SiC fibre, resulting in the failure of the SiCf/PyC/SiC composites as the oxidation temperature increases to 1600?°C. On the other hand, the oxidation products of B2O3 molten compounds (reacted from the BN interface) fill up the fracture, cracks, and voids in the SiC matrix, providing excellent strength retention at elevated oxidation temperatures. Moreover, under the protection of B2O3, the SiCf/BN/SiC mini-composites show a nearly intact microstructure of the SiC fibre, a low void growth rate from the matrix to fibre, and inhibition of new void formation and the SiO2 grain growth from room to high temperatures. This work provides guidance for predicting the service life of SiCf/PyC/SiC and SiCf/BN/SiC composite materials, and is fundamental for establishing multiscale damage models on a local scale.  相似文献   
39.
B4C-TiB2-SiC composites were fabricated via hot pressing using ball milled B4C, TiB2, and SiC powder mixtures as the starting materials. The impact of ball milling on the densification behaviors, mechanical properties, and microstructures of the ceramic composites were investigated. The results showed that the refinement of the powder mixtures and the removal of the oxide impurities played an important role in the improvement of densification and properties. Moreover, the formation of the liquid phases during the sintering was deemed beneficial for densification. The typical values of relative density, hardness, bending strength, and fracture toughness of the composites reached 99.20%, 32.84?GPa, 858?MPa and 8.21?MPa?m1/2, respectively. Crack deflection, crack bridging, crack branching, and microcracking were considered to be the potential toughening mechanisms in the composites. Furthermore, numerous nano-sized intergranular/intragranular phases and twin structures were observed in the B4C-TiB2-SiC composite.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号