Organic–inorganic halide perovskites are emerging materials for photovoltaic applications with certified power conversion efficiencies (PCEs) over 25%. Generall... 相似文献
To treat critical-size bone defects, composite materials and tissue-engineered bone grafts play important roles in bone repair materials. The purpose of this study was to investigate the bone regenerative potential of hybrid scaffolds consisting of macroporous calcium phosphate cement (CPC) and microporous mineralized collagen matrix (MCM). Hybrid scaffolds were synthetized by 3D plotting CPC and then filling with MCM (MCM-CPC group) and implanted into a 5 mm critical size femoral defect in rats. Defects left empty (control group) as well as defects treated with scaffolds made of CPC only (CPC group) and MCM only (MCM group) served as controls. Eight weeks after surgery, micro-computed tomography scans and histological analysis were performed to analyze the newly formed bone, the degree of defect healing and the activity of osteoclasts. Mechanical stability was tested by 3-point-bending of the explanted femora. Compared with the other groups, more newly formed bone was found within MCM-CPC scaffolds. The new bone tissue had a clamp-like structure which was fully connected to the hybrid scaffolds and thereby enhanced the biomechanical strength. Together, the biomimetic hybrid MCM-CPC scaffolds enhanced bone defect healing by improved osseointegration and their differentiated degradation provides spatial effects in the process of critical-bone defect healing. 相似文献
Understanding the mechanism of degradation in solid oxide fuel cells (SOFCs) using nickel/yttria-stabilized zirconia (Ni-YSZ) as the anode material is very important for the optimization of cell performance. In this work, the effects of thermal cycling on the microstructure of the Ni-YSZ anode are explored using the three-dimensional X-ray nano computed tomography (nano-CT) imaging technique. It is found that the average Ni particle size increased with thermal cycling, which is associated with the decreased connectivity of the Ni phase and the three-phase-boundary (TPB) length. Moreover, the conductivities of the anode samples are also reduced with the increase in thermal cycle times. The implication of these observations is discussed in terms of the relationship between the conductivity and connectivity of the Ni phase. 相似文献
Multidimensional Systems and Signal Processing - Traffic surveillance video is recorded in uncontrolled outdoor scenarios. If the camera view gets obstructed by the leaves, the video will fail to... 相似文献
Two specific chemical receptive fields of brain, namely the amygdala and the orbital-frontal cortex, are related to valence and arousal in medical experiments. Functional magnetic resonance imaging (fMRI), which is a noninvasive, repeatable, and atomical tool for medical imaging in clinic system, was widely used in affective computing; however, it faces its dataset processing difficulty for dimensional reduction as well as for decreasing the computational complexity. In addition, features extraction from those de-dimensionality datasets is a challenging issue. The current work solved the de-dimensionality issue by using some preprocessing algorithms including clustering, morphological segmenting, and locality preserving projection. In order to keep useful information in fMRI dataset for reduction process, improved neighborhood pixel-based locality preserving projection (NP-LPP) algorithm was addressed and continuously for feature extraction operating using Otsu weighted sum of histogram. Furthermore, a modified covariance power spectral density (MC-PSD) separately in an fMRI Valence–Arousal experiments was measured. The results were analyzed and compared with affective norms English words system. The experiments established that the proposed methods of NP-LPP effectively simplified high complexity of fMRI, and Otsu weighted sum of histogram exhibited superior performance for features extraction compared to the MC-PSD through the calculation root mean standard error. The current proposed method provided a potential application and promising research direction on human semantic retrieval through medical imaging dataset.