首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2279篇
  免费   103篇
  国内免费   8篇
电工技术   23篇
综合类   3篇
化学工业   579篇
金属工艺   33篇
机械仪表   47篇
建筑科学   80篇
矿业工程   5篇
能源动力   95篇
轻工业   249篇
水利工程   37篇
石油天然气   10篇
无线电   171篇
一般工业技术   327篇
冶金工业   233篇
原子能技术   14篇
自动化技术   484篇
  2024年   5篇
  2023年   33篇
  2022年   92篇
  2021年   116篇
  2020年   78篇
  2019年   65篇
  2018年   69篇
  2017年   75篇
  2016年   79篇
  2015年   79篇
  2014年   66篇
  2013年   152篇
  2012年   155篇
  2011年   157篇
  2010年   105篇
  2009年   113篇
  2008年   99篇
  2007年   101篇
  2006年   92篇
  2005年   77篇
  2004年   63篇
  2003年   42篇
  2002年   52篇
  2001年   28篇
  2000年   16篇
  1999年   27篇
  1998年   56篇
  1997年   39篇
  1996年   23篇
  1995年   18篇
  1994年   16篇
  1993年   18篇
  1992年   8篇
  1991年   14篇
  1990年   8篇
  1989年   18篇
  1988年   8篇
  1987年   14篇
  1986年   12篇
  1985年   7篇
  1984年   11篇
  1983年   10篇
  1982年   4篇
  1981年   7篇
  1980年   15篇
  1979年   4篇
  1976年   9篇
  1975年   4篇
  1974年   7篇
  1972年   4篇
排序方式: 共有2390条查询结果,搜索用时 17 毫秒
71.
The overall impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on our society is unprecedented. The identification of small natural ligands that could prevent the entry and/or replication of the coronavirus remains a pertinent approach to fight the coronavirus disease (COVID-19) pandemic. Previously, we showed that the phenolic compounds corilagin and 1,3,6-tri-O-galloyl-β-D-glucose (TGG) inhibit the interaction between the SARS-CoV-2 spike protein receptor binding domain (RBD) and angiotensin-converting enzyme 2 (ACE2), the SARS-CoV-2 target receptor on the cell membrane of the host organism. Building on these promising results, we now assess the effects of these phenolic ligands on two other crucial targets involved in SARS-CoV-2 cell entry and replication, respectively: transmembrane protease serine 2 (TMPRSS2) and 3-chymotrypsin like protease (3CLpro) inhibitors. Since corilagin, TGG, and tannic acid (TA) share many physicochemical and structural properties, we investigate the binding of TA to these targets. In this work, a combination of experimental methods (biochemical inhibition assays, surface plasmon resonance, and quartz crystal microbalance with dissipation monitoring) confirms the potential role of TA in the prevention of SARS-CoV-2 infectivity through the inhibition of extracellular RBD/ACE2 interactions and TMPRSS2 and 3CLpro activity. Moreover, molecular docking prediction followed by dynamic simulation and molecular mechanics Poisson–Boltzmann surface area (MMPBSA) free energy calculation also shows that TA binds to RBD, TMPRSS2, and 3CLpro with higher affinities than TGG and corilagin. Overall, these results suggest that naturally occurring TA is a promising candidate to prevent and inhibit the infectivity of SARS-CoV-2.  相似文献   
72.
The brain-derived neurotrophic factor (BDNF) was discovered in the last century, and identified as a member of the neurotrophin family. BDNF shares approximately 50% of its amino acid with other neurotrophins such as NGF, NT-3 and NT-4/5, and its linear amino acid sequences in zebrafish (Danio rerio) and human are 91% identical. BDNF functions can be mediated by two categories of receptors: p75NTR and Trk. Intriguingly, BDNF receptors were highly conserved in the process of evolution, as were the other NTs’ receptors. In this review, we update current knowledge about the distribution and functions of the BDNF-TrkB system in the sensory organs of zebrafish. In fish, particularly in zebrafish, the distribution and functions of BDNF and TrkB in the brain have been widely studied. Both components of the system, associated or segregated, are also present outside the central nervous system, especially in sensory organs including the inner ear, lateral line system, retina, taste buds and olfactory epithelium.  相似文献   
73.
74.
A study is reported on the effect of the filler size and concentration on the electrical resistivity, density, and hardness of composites made of copper powder embedded in nylon 6 matrix by means of compression molding. The electrical resistivity of the composites is > 1011 ohm·cm unless the metal content reached the percolation threshold, beyond which the resistivity decreased markedly by as much as 1012. The percolation concentration was found to decrease with a decrease in the average particle diameter. The density of the composites was measured and compared with values calculated assuming different void levels within the samples. However, there is no sharp variation in the density due to the onset of percolation. Furthermore, it is shown that a percolation concentration can be also defined in the hardness/metal concentration curves as the intercept of linear regression curves of the low and high metal content regimes, respectively.  相似文献   
75.
76.
A wet air oxidation reaction was carried out in a gas/liquid catalytic membrane reactor of the contactor type. The oxidation of formic acid was used as a model reaction. The mesoporous top-layer of a ceramic tubular membrane was used as catalyst (Pt) support, and was placed at the interface of the gas (air) and liquid (HCOOH solution) phases.

A similar reaction was carried out in a conventional batch reactor, using a steering rate high enough to avoid gas-diffusion limitations, and exactly identical conditions than for the CMR (amount of catalyst, pressure, etc.). At room temperature, the CMR showed an initial activity three to six times higher than the conventional reactor. This activity increase was attributed to an easier oxygen access to the catalytic sites. Nevertheless, the catalytic membrane gradually deactivated after a few hours of operation. Different deactivation mechanisms are presented.  相似文献   

77.
Polydimethylsiloxane (PDMS) is an elastomeric polymer frequently used as implant material, for flexible tubing and in microfluidic devices. The pronounced hydrophobic surface of this unique material impedes many applications where a good wetting behavior is required. Consequentially, various ways of surface modifications have been used to introduce new properties. Plasma treatment is the most popular technique in this respect, but is not generally applicable, especially if hardly accessible surfaces are to be modified. A novel wet-chemistry-based modification scheme yielding an amino-functionalized PDMS surface using a combined alcoholysis/aminolysis reaction is presented. Biological applications are exemplified by the conjugation of the RGD peptide, or polyethylene glycol (PEG) and heparin, yielding surfaces with cell-adhesive or nonthrombogenic properties, respectively. The effect of subsequent conjugation with an adhesive peptide is tested in cell culture. Additionally, two antifouling surfaces generated by coupling heparin and polyethylene glycol respectively are shown to improve the materials resistance to platelet adhesion drastically while simultaneously preventing hydrophobic recovery of the PDMS surface. The findings provide a versatile means of surface functionalization of PDMS substrates and is suitable for many biomedical applications.  相似文献   
78.
Filtration of charged aerosols by granular bed filters enhanced by an externally applied electrostatic field was studied experimentally. The filtration efficiencies of latex aerosols by sand beds were measured for various aerosol and bed granule diameters. The results were compared with theoretical solutions. It was demonstrated that high filtration efficiencies of charged aerosols may be achieved when moderate electrostatic fields are applied to a filter.  相似文献   
79.
In this paper the influence of melt-processing on the final polymer/layered silicate nanocomposite morphology is discussed. In particular the role of shear forces on the transformation of the original large clay agglomerates is of interest. Several polymer nanocomposites were prepared by melt-extrusion, involving polycaprolactone, poly(ethylene oxide), polyamide-12 or polyamide-6 as the matrix polymer. The nanocomposite morphology was characterised by X-ray diffraction and transmission electron microscopy and the clay tactoid morphology with polarised optical microscopy and scanning electron microscopy. The development of the tactoid and nanocomposite morphology during melt-mixing under shear was studied time-resolved by optical microscopy in conjunction with a rheometer and synchrotron X-ray scattering together with a Couette type flow cell. The shear forces in the melt-preparation of polymer layered mineral nanocomposites facilitate the break-up of large-sized agglomerates, whereas the extent of further exfoliation of the mineral layers is determined by the compatibility between the polymer matrix and the mineral layers rather than by shear forces.  相似文献   
80.
Decoupling the constitutive equations from the balance and constraint equations allows for reformulating a conventional forward problem into two reverse problems. The first reverse problem is the reverse of a simulation problem, where the process model is solved in terms of the constitutive (synthesis/design) variables instead of the process variables, thus providing the synthesis/design targets. The second reverse problem (reverse property prediction) solves the constitutive equations to identify unit operations, operating conditions and/or products by matching the synthesis/design targets. Visualization of the problem is achieved by employing recently developed property clustering techniques, which allows a high-dimensional problem to be visualized in two or three dimensions. The clusters by definition satisfy intra-stream and inter-stream conservation through linear “mixing” rules, which allows for the development of consistent additive rules along with their ternary representation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号