首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   4篇
化学工业   7篇
建筑科学   1篇
轻工业   1篇
水利工程   1篇
无线电   2篇
一般工业技术   20篇
自动化技术   1篇
  2019年   2篇
  2018年   3篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   3篇
  2013年   5篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2007年   2篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2000年   1篇
  1978年   1篇
排序方式: 共有33条查询结果,搜索用时 15 毫秒
21.
Abnormal protein aggregates, so called amyloid fibrils, are mainly known as pathological hallmarks of a wide range of diseases, but in addition these robust well‐ordered self‐assembled natural nanostructures can also be utilized for creating distinct nanomaterials for bioelectronic devices. However, current methods for producing amyloid fibrils in vitro offer no spatial control. Herein, we demonstrate a new way to produce and spatially control the assembly of amyloid‐like structures using an organic electronic ion pump (OEIP) to pump distinct cations to a reservoir containing a negatively charged polypeptide. The morphology and kinetics of the created proteinaceous nanomaterials depends on the ion and current used, which we leveraged to create layers incorporating different conjugated thiophene derivatives, one fluorescent (p‐FTAA) and one conducting (PEDOT‐S). We anticipate that this new application for the OEIP will be useful for both biological studies of amyloid assembly and fibrillogenesis as well as for creating new bioelectronic nanomaterials and devices.  相似文献   
22.
We herein report on an iontronic device to drive and control Aβ1‐40 and Aβ1‐42 fibril formation. This system allows kinetic control of Aβ aggregation by regulation of H+ flows. The formed aggregates show both nanometer‐sized fibril structure and microscopic growth, thus mimicking senile plaques, at the H+‐outlet. Mechanistically we observed initial accumulation of Aβ1‐40 likely driven by electrophoretic migration which preceded nucleation of amyloid structures in the accumulated peptide cluster.

  相似文献   

23.
A total of 45 experiments were carried out to evaluate the robustness of two similar tablet formulations—a product of two strengths—with respect to normal batch-to-batch variation of the excipients and the active pharmaceutical ingredient. The formulations consist of 10 ingredients. Because of the differing amounts of active pharmaceutical ingredients, the two formulations also differ in the amounts of two of the diluents and one of the binders. The excipients and active pharmaceutical ingredient were characterized in terms of multiple variables, and principal properties were calculated with principal component analysis. A Plackett and Burman design was applied to the principal properties. The relationships between the design factors and two responses, mean disintegration time and mean crushing strength, were evaluated by using regression methods. Both formulations were found to be robust under controlled conditions.  相似文献   
24.
We investigated the effect of spherical gold nanoparticles on immature dendritic cells (DCs). Conventionally produced nanoparticles had a maturating effect on the DCs--a result of lipopolysaccharide (LPS) contamination. By modification of the production process, low-LPS particles were obtained, which had practically no effect on phenotypic maturation or cytokine production of the DCs. Our findings emphasize the importance of high purity in the production of nanoparticles, since possible contaminants may interfere with the assessment of biological/medical effects. They also highlight that nanoparticles can function as carriers of immune modulating contaminants.  相似文献   
25.
Alum is the most frequently used adjuvant today, primarily inducing Th2 responses. However, Th1‐type responses are often desirable within immune therapy, and therefore the development of new adjuvants is greatly needed. Mesoporous silica particles with a highly ordered pore structure have properties that make them very interesting for future controlled drug delivery systems, such as controllable particle and pore size; they also have the ability to induce minor immune modulatory effects, as previously demonstrated on human‐monocyte‐derived dendritic cells (MDDCs). In this study, mesoporous silica particles are shown to be efficiently engulfed by MDDCs within 2 h, probably by phagocytic uptake, as seen by confocal microscopy and transmission electron microscopy. A co‐culture protocol is developed to evaluate the capability of MDDCs to stimulate the development of naïve CD4+ T cells in different directions. The method, involving ELISpot as a readout system, demonstrates that MDDCs, after exposure to mesoporous silica particles (AMS‐6 and SBA‐15), are capable of tuning autologous naïve T cells into different effector cells. Depending on the size and functionalization of the particles added to the cells, different cytokine patterns are detected. This suggests that mesoporous silica particles can be used as delivery vehicles with tunable adjuvant properties, which may be of importance for several medical applications, such as immune therapy and vaccination.  相似文献   
26.
Hydrophobic, self‐doped conjugated polyelectrolytes (CPEs) are introduced as highly stable active materials for organic electrochemical transistors (OECTs). The hydrophobicity of CPEs renders films very stable in aqueous solutions. The devices operate at gate voltages around zero and show no signs of degradation when operated for 104 cycles under ambient conditions. These properties make the produced OECTs ideal devices for applications in bioelectronics.  相似文献   
27.
Electronic control of biological processes with bioelectronic devices holds promise for sophisticated regulation of physiology, for gaining fundamental understanding of biological systems, providing new therapeutic solutions, and digitally mediating adaptations of organisms to external factors. The organic electronic ion pump (OEIP) provides a unique means for electronically‐controlled, flow‐free delivery of ions, and biomolecules at cellular scale. Here, a miniaturized OEIP device based on glass capillary fibers (c‐OEIP) is implanted in a biological organism. The capillary form factor at the sub‐100 µm scale of the device enables it to be implanted in soft tissue, while its hyperbranched polyelectrolyte channel and addressing protocol allows efficient delivery of a large aromatic molecule. In the first example of an implantable bioelectronic device in plants, the c‐OEIP readily penetrates the leaf of an intact tobacco plant with no significant wound response (evaluated up to 24 h) and effectively delivers the hormone abscisic acid (ABA) into the leaf apoplast. OEIP‐mediated delivery of ABA, the phytohormone that regulates plant's tolerance to stress, induces closure of stomata, the microscopic pores in leaf's epidermis that play a vital role in photosynthesis and transpiration. Efficient and localized ABA delivery reveals previously unreported kinetics of ABA‐induced signal propagation.  相似文献   
28.
ABSTRACT

A tablet formulation for direct compression has previously been studied using multivariate design. An optimization study of one of the most important tablet properties, disintegration time, revealed that excipients with Principal Properties (PP's) that were predicted as suitable by the model were not represented within the studied material.

The feasibility of using mixtures of excipients in the multivariate approach to tablet formulation to solve this problem has been investigated in the present study. By mixing different excipients of the same excipient class, it should be possible to obtain mixtures with the predicted PP's, which in turn should give a formulation with the desired properties. In order to investigate the utility of this approach, separate mixture designs were applied to both binders and fillers (diluents).

As reported here, the Partial Least Squares Projections to Latent Structures (PLS) model developed in the previously published screening study has been validated in the sense that the interesting region of the PP space identified in it has been shown to contain excipients, pure or mixed, that give the formulation suitable properties. Formulations with suitable properties were found with the mixture experiments. The local models also offer several alternatives for the composition of the formulation that yield the desired disintegration time.  相似文献   
29.
We describe an apparatus that provides, for the first time, a seamless bridge between femtosecond and microsecond time-resolved Raman and infrared vibrational spectroscopy. The laser system comprises an actively Q-switched sub-nanosecond pulsed kilohertz laser electronically synchronized to an ultrafast titanium sapphire regenerative amplifier to within 0.2 ns. The ultrafast amplifier provides the stable probe light source enabling high-sensitivity infrared vibrational spectroscopy of transients. Time-resolved infrared spectra of the excited-state relaxation dynamics of metal carbonyl compounds are presented to illustrate the capability of the apparatus, and transient data is resolved from 1 picosecond to over 100 microseconds. The results are compared to conventional nanosecond Fourier transform infrared (FT-IR) and laser based flash photolysis time-resolved infrared technology.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号