By utilising Takagi–Sugeno (T–S) fuzzy set approach, this paper addresses the robust H∞ dynamic output feedback control for the non-linear longitudinal model of flexible air-breathing hypersonic vehicles (FAHVs). The flight control of FAHVs is highly challenging due to the unique dynamic characteristics, and the intricate couplings between the engine and fight dynamics and external disturbance. Because of the dynamics’ enormous complexity, currently, only the longitudinal dynamics models of FAHVs have been used for controller design. In this work, T–S fuzzy modelling technique is utilised to approach the non-linear dynamics of FAHVs, then a fuzzy model is developed for the output tracking problem of FAHVs. The fuzzy model contains parameter uncertainties and disturbance, which can approach the non-linear dynamics of FAHVs more exactly. The flexible models of FAHVs are difficult to measure because of the complex dynamics and the strong couplings, thus a full-order dynamic output feedback controller is designed for the fuzzy model. A robust H∞ controller is designed for the obtained closed-loop system. By utilising the Lyapunov functional approach, sufficient solvability conditions for such controllers are established in terms of linear matrix inequalities. Finally, the effectiveness of the proposed T–S fuzzy dynamic output feedback control method is demonstrated by numerical simulations. 相似文献
Video Shot Boundary Detection (SBD) is the fundamental process towards video summarization and retrieval. A fast and efficient SBD algorithm is necessary for real-time video processing applications. Extensive work has focused on accurate shot boundary detection at the expense of demanding computational costs. In this paper, we propose a fast SBD approach that reduces the computation pixel-wise and frame-wise while still giving satisfactory accuracy. The proposed approach substantially speeds up the computation through reducing both detection region and scope. Color histogram and mutual information are used together to measure the difference between frames. Corner distribution of frames is utilized to exclude most of false boundaries. We conduct extensive experiments to evaluate the proposed approach, and the results show that our approach can not only speed up SBD, but also detect shot boundaries with high accuracy in both Cut (CUT) and Gradual Transition (GT) boundaries. 相似文献
The full spectrum technique in the fourier domain was studied for
simultaneous determination of Cu(II), Pb(II) and Cd(II) with 4-(2-pyridylazo) resorcinol (PAR). A program called SPGRFSQ. was designed to perform the calculations. Seven error functions were calculated for deducing the number of factors. Data reduction was performed using principal component analysis (PCA) algorithm. Experimental results showed the method to be successful even where there was severe overlap of spectra. 相似文献
A method has been developed to suppress the decomposition of propylene carbonate (PC) by coating graphite electrode foil with a layer of silver. Results from electrochemical impedance measurements show that the Ag-coated graphite electrode presents lower charge transfer resistance and faster diffusion of lithium ions in comparison with the virginal one. Cyclic voltammograms and discharge-charge measurements suggest that the decomposition of propylene carbonate and co-intercalation of solvated lithium ions are prevented, and lithium ions can reversibly intercalate into and deintercalate from the Ag-coated graphite electrode. These results indicate that Ag-coating is a good way to improve the electrochemical performance of graphitic carbon in PC-based electrolyte solutions. 相似文献
Palmprint recognition and palm vein recognition are two emerging biometrics technologies. In the past two decades, many traditional methods have been proposed for palmprint recognition and palm vein recognition, and have achieved impressive results. However, the research on deep learning-based palmprint recognition and palm vein recognition is still very preliminary. In this paper, in order to investigate the problem of deep learning based 2D and 3D palmprint recognition and palm vein recognition in-depth, we conduct performance evaluation of seventeen representative and classic convolutional neural networks (CNNs) on one 3D palmprint database, five 2D palmprint databases and two palm vein databases. A lot of experiments have been carried out in the conditions of different network structures, different learning rates, and different numbers of network layers. We have also conducted experiments on both separate data mode and mixed data mode. Experimental results show that these classic CNNs can achieve promising recognition results, and the recognition performance of recently proposed CNNs is better. Particularly, among classic CNNs, one of the recently proposed classic CNNs, i.e., EfficientNet achieves the best recognition accuracy. However, the recognition performance of classic CNNs is still slightly worse than that of some traditional recognition methods.