In this paper, a theoretical study is proposed based on the assumption that the vortices on low-angle grain boundaries (GBs) in high-temperature superconductor (HTS) are mixed Abrikosov-Josephson (AJ) vortices. The critical current density through GB is obtained on the basis of the Bean critical model and the assumption that the periods of AJ vortices coincide with the ones of Abrikosov (A) vortices. The model also enables us to calculate Jc of HTS with an inclined GB. In addition, the effect of strain on critical current density is also taken into account in this model by considering the strain dependence of deparing current density within GB. There is a good agreement of our results with the classical power-law expression. The model proposed in this work can be used for simultaneous studies of the effects of misorientation angles, GB-inclined angles, and applied fields on the critical current density of polycrystalline HTS. 相似文献
Resin-based friction materials (RFM) are widely used in vehicle brakes. However, the thermosetting resins and rigid fillers in RFM have low toughness and produce strong vibration behavior during continuous friction processes, which adversely affects the equipment. This work proposed a method for co-blending modification of RFM with silicone rubber powders (SRP) to mitigate friction-induced vibrations, and the mechanism of silicone rubber modification on the vibrational behavior of RFM during friction was investigated. The results demonstrate that SRP-modified RFM exhibit excellent damping property and frictional characteristics. SRP modification improves the stability of the coefficient of friction and reduces fatigue wear. The wear rate of RFM modified with 10 wt% SRP reduced by 29% and the average amplitude of friction-induced vibration decreased by 35.5% compared to unmodified RFM. This work provides both theoretical and practical foundations for designing and developing RFM with high damping, low wear, and low vibration characteristic. 相似文献
Spin-polarized two-dimensional (2D) materials with large and tunable spin-splitting energy promise the field of 2D spintronics. While graphene has been a canonical 2D material, its spin properties and tunability are limited. Here, this work demonstrates the emergence of robust spin-polarization in graphene with large and tunable spin-splitting energy of up to 132 meV at zero applied magnetic fields. The spin polarization is induced through a magnetic exchange interaction between graphene and the underlying ferrimagnetic oxide insulating layer, Tm3Fe5O12, as confirmed by its X-ray magnetic circular dichroism (XMCD). The spin-splitting energies are directly measured and visualized by the shift in their Landau-fan diagram mapped by analyzing the measured Shubnikov-de-Haas (SdH) oscillations as a function of applied electric fields, showing consistent fit with the first-principles and machine learning calculations. Further, the observed spin-splitting energies can be tuned over a broad range between 98 and 166 meV by field cooling. The methods and results are applicable to other 2D (magnetic) materials and heterostructures, and offer great potential for developing next-generation spin logic and memory devices. 相似文献
Wounds in harsh environments can face long-term inflammation and persistent infection, which can slow healing. Wound spray is a product that can be rapidly applied to large and irregularly dynamic wounds, and can quickly form a protective film in situ to inhibit external environmental infection. In this study, a biodegradable A and B combined multi-functional spray hydrogel is developed with methacrylate-modified chitosan (CSMA1st) and ferulic acid (FA) as type A raw materials and oxidized Bletilla striata polysaccharide (OBSP) as type B raw materials. The precursor CSMA1st-FA/OBSP (CSOB-FA1st) hydrogel is formed by the self-cross-linking of dynamic Schiff base bonds, the CSMA-FA/OBSP (CSOB-FA) hydrogel is formed quickly after UV–vis light, so that the hydrogel fits with the wound. Rapid spraying and curing provide sufficient flexibility and rapidity for wounds and the hydrogel has good injectability, adhesive, and mechanical strength. In rats and miniature pigs, the A and B combined spray hydrogel can shrink wounds and promote healing of infected wounds, and promote the enrichment of fibrocyte populations. Therefore, the multifunctional spray hydrogel combined with A and B can protect irregular dynamic wounds, prevent wound infection and secondary injury, and be used for safe and effective wound treatment, which has a good prospect for development. 相似文献
Recently, biomass-derived three-dimensional (3D) porous carbon materials have been gaining more interest as promising microwave absorbers due to their low cost, vast availability, and sustainability. Here, a novel 3D interconnected porous magnetic carbon foams are in-situ synthesized via a combination of sol-gel and carbonization process with wheat straw as the carbon source and FeCl3·6H2O as the magnetic regulating agent. During the process of foams formation, the lignocelluloses from the steam-exploded wheat straw are converted into interconnected carbon sheet networks with hierarchical porous structures, and the precursor FeCl3·6H2O is converted into magnetic nanoparticles uniformly embedded in the porous carbon foams. The generated magnetic nanoparticles are benefit to enhance the interface polarization and magnetic loss ability to improve the efficient complementarities between the dielectric and magnetic loss, thus increasing the impedance matching. The obtained sample treated at 600 °C displays the best microwave absorption (MA) performance. It presents a minimal reflection loss (RL) of −43.6 dB at 7.1 GHz and the effective bandwidth (RL < −10 dB) is 3.3 GHz with the thickness of 4.7 mm. The 3D porous structure, multi-interfaces and the synergy of dielectric loss and magnetic loss make great contribution to the outstanding MA performance.