首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6247篇
  免费   177篇
  国内免费   4篇
电工技术   58篇
综合类   1篇
化学工业   1232篇
金属工艺   68篇
机械仪表   94篇
建筑科学   325篇
矿业工程   21篇
能源动力   106篇
轻工业   601篇
水利工程   64篇
石油天然气   22篇
武器工业   1篇
无线电   293篇
一般工业技术   1095篇
冶金工业   1633篇
原子能技术   34篇
自动化技术   780篇
  2022年   57篇
  2021年   69篇
  2020年   72篇
  2019年   72篇
  2018年   76篇
  2017年   65篇
  2016年   126篇
  2015年   88篇
  2014年   163篇
  2013年   373篇
  2012年   273篇
  2011年   377篇
  2010年   274篇
  2009年   280篇
  2008年   363篇
  2007年   334篇
  2006年   300篇
  2005年   261篇
  2004年   202篇
  2003年   195篇
  2002年   188篇
  2001年   115篇
  2000年   133篇
  1999年   95篇
  1998年   99篇
  1997年   123篇
  1996年   105篇
  1995年   88篇
  1994年   89篇
  1993年   100篇
  1992年   97篇
  1991年   57篇
  1990年   86篇
  1989年   78篇
  1988年   61篇
  1987年   80篇
  1986年   75篇
  1985年   81篇
  1984年   79篇
  1983年   57篇
  1982年   62篇
  1981年   65篇
  1980年   39篇
  1979年   53篇
  1978年   50篇
  1977年   37篇
  1976年   34篇
  1975年   32篇
  1974年   28篇
  1973年   27篇
排序方式: 共有6428条查询结果,搜索用时 15 毫秒
991.
992.
The adhesion between a grafted polyelectrolyte layer (brush) and a gel of an oppositely charged polyelectrolyte has been measured as a function of applied pressure, and the interface has been traced using neutron reflectometry. The interface (in aqueous medium at pH 6) between the (polycationic) brush and the (polyanionic) gel has a limited pressure dependence, with a small amount of deformation of the interface at the brush–gel contact. Brushes with a dry thickness of up to 13 nm exhibit weak adhesion (measured using a mechanical force tester) with an adhesive failure when the gel is detached. Thicker brushes result in the gel exhibiting cohesive failure. Reversing the geometry, whereby a polycationic brush is replaced with a polyanion and the polyanionic gel is replaced with a polycation, reveals that the pH dependence of the adhesion is moderately symmetric about pH 6, but that the maximum force required to separate the polycation gel from the polyanion brush over the range of pH is greater than that for the polycation brush and polyanion gel. The polyanion used is poly(methacrylic acid) (PMAA) and polycations of poly[2-(diethylamino)ethyl methacrylate] (PDEAEMA) and poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA) were used.  相似文献   
993.
The impact of the four membrane-bound [NiFe]-hydrogenases (Hyd) of Escherichia coli on total H2-oxidizing activity during fermentation of a mixture of glucose, glycerol and formate at different pHs was examined. It was shown that Hyd-2 had a major contribution to total Hyd activity at pH 7.5 in early-stationary phase (24 h) cells, while the main contribution was made by Hyd-3 in late-stationary phase (72 h). Hyd-4-dependent Hyd activity could be demonstrated at pH 6.5 in cells lacking Hyd-1, Hyd-2 and Hyd-3. at pH 7.5 Hyd-4-dependent formate dehydrogenase (FDH-H) activity was demonstrated. Growth properties and fermentation end product patterns during 72 h demonstrated that the cells retained viability deep into stationary phase. Our findings emphasize the importance of formate in modulating H2 metabolism, presumably by contributing to maintain redox, pH and pmf balance. This is important for regulating and enhancing H2 production when a mixture of carbon sources is applied.  相似文献   
994.
This study explores sintering and piezoelectricity of ZnO-doped perovskite Pb(In1/2Nb1/2)O3-Pb(Zn1/3Nb2/3)O3-PbTiO3 (PIN-PZN-PT) ceramics. The enhanced densification of ZnO-doped PIN-PZN-PT is attributed to the formation of oxygen vacancies by the incorporation of Zn2+ into the perovskite B-site and increased rate of bulk diffusion relative to undoped PIN-PZN-PT. Incorporation of Zn2+ into the perovskite lattice increased the tetragonal character of PIN-PZN-PT as demonstrated by tetragonal peak splitting and increased Curie temperature. Sintering in flowing oxygen reduced the solubility of Zn2+ in the perovskite lattice and resulted in rhombohedral PIN-PZN-PT. Sintering in oxygen prevented secondary phase formation which resulted in a high-piezoelectric coefficient (d33 – 550 pC/N), high-coercive field (Ec – 13 kV/cm), and high-rhombohedral to tetragonal phase transition temperature (Tr-t – 165°C). We conclude that ZnO-doped PIN-PZN-PT ceramics are excellent candidates for high-power transducer applications.  相似文献   
995.
Aluminum alloys containing magnesium and silicon as the major solutes are strengthened by precipitation of the metastable precursors (β″) of the equilibrium β (Mg2Si) phase. In this study, dynamic aging of two Al-Mg-Si alloys—the 6061 (Al-1.34% Mg2Si) and 6069 (Al-2.25% Mg2Si) alloys—was conducted through equal channel angular extrusion (ECAE). Equal channel angular extrusion-assisted dynamic aging provides the potential for improving mechanical properties. The aging time scale is reduced from ∼1,000 min. for conventional static peak aging to ∼10 min. by using ECAE-assisted dynamic aging. Compared to the significant strengthening effect in static aging treatment, a notable further increase in ultimate tensile strength is achieved by dynamic aging: over 40 MPa for the 6061 alloy and 100 MPa for the 6069 alloy. Microstructures of both aged alloys were characterized using transmission electron microscopy; dislocation-assisted precipitation was observed to be the primary precipitate nucleation and growth mechanism during the dynamic aging process. It is concluded that ECAE-assisted dynamic aging is controllable and efficient in executing aging treatment that could result in superior mechanical properties of Al-Mg-Si alloys.  相似文献   
996.
Microwave (MW) fixation methods are important because excellent preservation of both cell structure and antigenicity can be attained several orders of magnitude faster than by routine chemical fixation methods. However, because of the limitations of commercial MW ovens, fixation results are often irreproducible. We present a standardization protocol for MW fixation in household MW ovens that emphasizes magnetron warm-up; the use of a water load during sample irradiation, of an agar/saline/Giemsa model to evaluate uniformity of irradiation within the MW cavity, and of specimen containers with one dimension less than 1.5 cm; and fast specimen handling to prevent conductive heating artifacts after irradiation. We describe a prototypic MW device that improves the precision of sample irradiation and fixes blocks of tissue and cells in suspension in milliseconds. The solutions used to immerse the specimen during irradiation influence the specimen morphology. Aldehyde- or osmium-containing solutions used simultaneously with MW irradiation resulted in the best morphologic preservation of specimens up to 1 cm3. Using MW fixation methods and a postembedding, ultrastructural immunogold-labeling approach, we have localized granule chymase and histamine in rat mast cells and amylase in rat parotid acinar cells.  相似文献   
997.
Metallurgical and Materials Transactions A -  相似文献   
998.
Breeding birds and anurans (frogs and toads) in coastal wetlands of Green Bay, Lake Michigan vary dynamically with changing water levels, habitat type, and geography. We describe species assemblages over a seven-year period (2011–2017) beginning with historic low water levels followed by an increase in average lake level of 0.85?m. In general, species richness and abundance of marsh-obligate species responded positively to increasing water levels, although several species of shallow wetlands (sandhill crane, sedge wren, swamp sparrow, and American toad) showed the opposite trend. Anuran assemblages were more diverse in the middle and upper bay, coinciding with a well-established nutrient gradient from the hypereutrophic lower bay to more oligotrophic waters of the upper bay. Three marsh-obligate bird species (black tern, sandhill crane, and sedge wren) were significantly more abundant in the middle or upper bay while sora, American coot, and common gallinule were more abundant in the eutrophic lower bay. Our findings have several important implications for conservation. Inland wetlands near the coast (including diked wetlands) might play a key ecological role by providing refugia for some species during low water years. However, the importance of shallow coastal wetlands and nearshore gradients of wetland habitat might be overlooked during low water years; when high water returns, these areas can become extremely productive and species-rich.  相似文献   
999.
Agricultural ponds are an important alternative source of water for crop irrigation to conserve surface and ground water resources. In recent years more such ponds have been constructed in Mississippi and around the world. There is currently, however, a lack of a tool to simultaneously estimate crop irrigation demand and pond water availability. In this study, a Pond-Irrigation Model (PIM) was developed to meet this need using STELLA (Structural Thinking, Experiential Learning Laboratory with Animation) software. PIM simulated crop land and agricultural pond hydrological processes such as surface runoff, soil drainage, and evapotranspiration as well as crop irrigation demand and pond water availability. More importantly, PIM was able to decide when to conduct crop irrigation based on management allowable depletion (MAD) root zone soil water content and to determine optimal ratios of agricultural pond size to crop land with sufficient pond water available for crop irrigation. As a case demonstration, the model was applied to concomitantly estimate row crops (i.e., corn, cotton, and soybeans) water irrigation demand and pond water availability in a farm located at East-central Mississippi. Simulations revealed that corn used more soil water for growth than soybeans, whereas soybeans needed more irrigation water than corn and occurred due to less rainwater available for soybeans growth. We also found that there was one time for corn, zero time for cotton, and two times for soybeans when the pond water level was drawn to near zero for irrigation from 2005 to 2014. PIM developed in this study is a useful tool for estimating crop irrigation demand and pond water availability simultaneously.  相似文献   
1000.
Supported metal nanoparticles (MNPs) undergo severe aggregation, especially when the interaction between MNPs and their supports are limited and weak where their performance deteriorates dramatically. This becomes more severe when catalysts are operated under high temperature. Here, it is reported that MNPs including Pt, Au, Rh, and Ru, with sub‐2 nm size can be stabilized on densely packed defective CeO2 nanoparticles with sub‐5 nm size via strong coupling by direct laser conversion of corresponding metal ions encapsulated cerous metal–organic frameworks (Ce‐MOFs). Ce‐MOF serves as an ideal dispersion precursor to uniformly encapsulate noble metal ions in their orderly arranged pores. Ultrafast laser vaporization and cooling forms uniform, ultrasmall, well‐mixed, and exceptionally dense nanoparticles of metal and metal oxide concurrently. The laser‐induced ultrafast reaction (within tens of nanoseconds) facilitates the precipitation of CeO2 nanoparticles with abundant surficial defects. Due to the well‐mixed ultrasmall Pt and CeO2 components with strong coupling, this catalyst exhibits exceptionally high stability and activity both at low and high temperatures (170–1100 °C) for CO oxidation in long‐term operation, significantly exceeding catalysts prepared by traditional methods. The scalable feature of laser and huge MOF family make it a versatile method for the production of MNP‐based nanocomposites in wide applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号