首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1172篇
  免费   56篇
  国内免费   5篇
电工技术   25篇
综合类   5篇
化学工业   348篇
金属工艺   19篇
机械仪表   20篇
建筑科学   16篇
矿业工程   2篇
能源动力   51篇
轻工业   53篇
水利工程   1篇
石油天然气   2篇
无线电   117篇
一般工业技术   305篇
冶金工业   68篇
原子能技术   3篇
自动化技术   198篇
  2024年   5篇
  2023年   12篇
  2022年   55篇
  2021年   72篇
  2020年   45篇
  2019年   44篇
  2018年   74篇
  2017年   62篇
  2016年   53篇
  2015年   51篇
  2014年   52篇
  2013年   96篇
  2012年   60篇
  2011年   56篇
  2010年   38篇
  2009年   44篇
  2008年   49篇
  2007年   35篇
  2006年   31篇
  2005年   24篇
  2004年   28篇
  2003年   20篇
  2002年   35篇
  2001年   13篇
  2000年   14篇
  1999年   17篇
  1998年   17篇
  1997年   15篇
  1996年   9篇
  1995年   12篇
  1994年   6篇
  1993年   18篇
  1992年   11篇
  1991年   6篇
  1990年   9篇
  1989年   5篇
  1988年   6篇
  1987年   6篇
  1986年   3篇
  1985年   5篇
  1984年   1篇
  1983年   7篇
  1982年   1篇
  1981年   1篇
  1980年   3篇
  1979年   1篇
  1977年   4篇
  1976年   1篇
  1973年   1篇
排序方式: 共有1233条查询结果,搜索用时 15 毫秒
41.
Ammonia decomposition on Ir(100) has been studied over the pressure range from ultrahigh vacuum to 1.5 Torr and at temperatures ranging from 200 to 800 K. The kinetics of the ammonia decomposition reaction was monitored by total pressure change. The apparent activation energy obtained in this study (84 kJ/mol) is in excellent agreement with our previous studies using supported Ir catalysts (Ir/Al2O3 82 kJ/mol). Partial pressure dependence studies of the reaction rate yielded a positive order (0.9±0.1) with respect to ammonia and negative order (–0.7 ±0.1) with respect to hydrogen. Temperature-programmed desorption data from clean and hydrogen co-adsorbed Ir(100) surfaces indicate that ammonia undergoes facile decomposition on both these surfaces. Recombinative desorption of N2 is the rate-determining step with a desorption activation energy of 63 kJ/mol. Co-adsorption data also indicate that the observed negative order with respect to hydrogen pressure is due to enhancement of the reverse reaction (NH x + H NH x+1, x=0–2) in the presence of excess H atoms on the surface.  相似文献   
42.
ABSTRACT

In this work, constant amplitude fully reversible tension-compression (t-c) fatigue behaviour of two-phased epoxy/glass fibre and three-phased MWCNT/epoxy/glass fibre laminates modified with 0.5 and 1.0 vol.-% of MWCNTs is presented. Addition of 0.5 and 1.0 volume fraction of nanoparticles in the matrix phase increased the fatigue strength of the laminates by approximately 10% and 4%, respectively. GFRP laminates subjected to quasi-static compression and t-c fatigue were found to fail by matrix crushing and shearing contrary to matrix crushing, ply splitting and kink band failure presented by CNT modified laminates. Such mechanisms were due to additional matrix toughening imparted by the nanotubes. Two-parameters Weibull distribution was implemented for the statistical evaluation of the fatigue life data. For safety limits of the test results, S-N curves with reliability levels of 0.99, 0.5, 0.368 and 0.10 were produced using Weibull shape and scale parameters.  相似文献   
43.
SiO2 thin films are in high demand for wide range of applications including microelectronics, optoelectronics, solar energy conversion, photocatalysis, and self-cleaning coatings. The performance of thin film is strongly influenced by surface properties like surface roughness, thickness, morphology, wetting behavior, and thermal stability. In these applications, the SiO2 sols were prepared using tetraethylorthosilicate as a source of SiO2 and deposited on 100?×?40?×?2?mm3 glass slide using dip-coating method for 2?min and calcined at 250?°C for 30?min. The SiO2 thin films were obtained using DTAB, SDS, and Tween 20 (Tw 20) surfactants with the thickness of 36.92, 47.15, and 52.39?nm, respectively. Surface morphology was studied with AFM and surface roughness was depicted with 0.9528, 3.6534, and 0.9294?nm. Contact angle measurements have been performed with goniometer to evaluate the wetting behavior of the film. The contact angle of 58.01°, 48.40°, and 37.88° was observed with SDS, DTAB, and Tw 20 film, respectively. The SiO2 thin films with SDS showed more surface roughness and water repelling ability when compared to DTAB and least with Tw 20.  相似文献   
44.
The effect of isomerization of N,N′‐bisitaconimido‐4,4′‐diphenyl ether to the corresponding biscitraconimide on the curing characteristics and thermal stability of cured resins is described. Resins having bisitaconimide:biscitraconimide ratios of 23:77–93:7 were prepared by reacting 4,4′‐diaminodiphenyl ether with itaconic anhydride in solvents of different polarities and under different reaction conditions. Resins containing a higher proportion of citraconimide had a lower melting point (191 vs 208 °C). The curing exotherm was observed immediately after melting in all the resins and exothermic peak temperature reduced with increase in citraconimide content. Resins having a higher proportion of citraconimide on isothermal curing (200 °C, 2 h) and subsequent heating in nitrogen atmosphere degraded at a slightly lower temperature. However, the char yield at 800 °C did not show any systematic dependence on citraconimide content. © 2002 Society of Chemical Industry  相似文献   
45.
Novel hybrid composite membranes were prepared by blending poly(ethylene glycol) functionalized polyhedral oligomeric silsesquioxane [PPOSS] as nanofiller in varying concentration ranging from 1 to 5% (w/w) into sulfonated poly(ether ether ketone) [SPEEK] with degree of sulfonation ~55% for proton exchange membrane fuel cells [PEMFCs]. The effect of incorporation of PPOSS into SPEEK matrix was investigated in terms of thermomechanical and morphological properties, water uptake and proton conductivity of SPEEK. All the composite membranes were thermally and mechanically stable up to 250 °C. Transmission electron microscopy (TEM) revealed that the smallest particle size (~100 nm) of PPOSS was found for SPEEK membranes containing 2% (w/w) PPOSS where as agglomeration (~300 nm) was observed at higher loadings of PPOSS. The proton conductivity was found to be dependent on the morphology and was independent of the amount of water present in the membranes. At 100 °C and 100% RH, the highest proton conductivity (47 mS/cm compared 34 mS/cm for neat SPEEK i.e. an increase of ~51%) was recorded at 2% (w/w) PPOSS contents followed by a decrease on further addition of PPOSS.The water uptake of composite membranes increased with concentration of PPOSS while maintaining their hydrolytic stability at 100 °C for more than 24 h.  相似文献   
46.
Members of the Burkholderia genus of Proteobacteria are capable of living freely in the environment and can also colonize human, animal and plant hosts. Certain members are considered to be clinically important from both medical and veterinary perspectives and furthermore may be important modulators of the rhizosphere. Quorum sensing via N-acyl homoserine lactone signals (AHL QS) is present in almost all Burkholderia species and is thought to play important roles in lifestyle changes such as colonization and niche invasion. Here we present a census of AHL QS genes retrieved from public databases and indicate that the local arrangement (topology) of QS genes, their location within chromosomes and their gene neighborhoods show characteristic patterns that differ between the known Burkholderia clades. In sequence phylogenies, AHL QS genes seem to cluster according to the local gene topology rather than according to the species, which suggests that the basic topology types were present prior to the appearance of current Burkholderia species. The data are available at http://net.icgeb.org/burkholderia/.  相似文献   
47.
Gaurav Gupta 《Carbon》2005,43(7):1400-1406
A computational modeling study of texture formation in carbon-carbon composites based on carbon fibers and carbonaceous mesophase precursors is presented. The modeling predictions on texture formation and disclination structures are quantitatively validated with extensive experimental data. The number and type of disclinations displayed by the carbonaceous mesophase matrix is shown to be governed by the elasticity of the mesophase, the carbon fiber-mesophase interfacial energy, the size of the fibers, and positional arrangement of the fibers. The simulations provide new insights on the fundamental principles that govern texturing and disclination nucleation, and on how to control the structure of carbon-carbon composites through fiber concentration, fiber cross-section, and fiber-matrix interaction.  相似文献   
48.
Yadav  Nisha  Jadav  Sunil  Saini  Gaurav 《SILICON》2022,14(16):10681-10693
Silicon - To meet the scaling targets and continue with Moore’s Law, the transition from FinFET to Gate-All-Around (GAA) nanosheet Field Effect Transistors (FETs) is the necessity for...  相似文献   
49.
The frequency and severity of extreme climatic conditions such as drought, salinity, cold, and heat are increasing due to climate change. Moreover, in the field, plants are affected by multiple abiotic stresses simultaneously or sequentially. Thus, it is imperative to compare the effects of stress combinations on crop plants relative to individual stresses. This study investigated the differential regulation of physio-biochemical and metabolomics parameters in peanut (Arachis hypogaea L.) under individual (salt, drought, cold, and heat) and combined stress treatments using multivariate correlation analysis. The results showed that combined heat, salt, and drought stress compounds the stress effect of individual stresses. Combined stresses that included heat had the highest electrolyte leakage and lowest relative water content. Lipid peroxidation and chlorophyll contents did not significantly change under combined stresses. Biochemical parameters, such as free amino acids, polyphenol, starch, and sugars, significantly changed under combined stresses compared to individual stresses. Free amino acids increased under combined stresses that included heat; starch, sugars, and polyphenols increased under combined stresses that included drought; proline concentration increased under combined stresses that included salt. Metabolomics data that were obtained under different individual and combined stresses can be used to identify molecular phenotypes that are involved in the acclimation response of plants under changing abiotic stress conditions. Peanut metabolomics identified 160 metabolites, including amino acids, sugars, sugar alcohols, organic acids, fatty acids, sugar acids, and other organic compounds. Pathway enrichment analysis revealed that abiotic stresses significantly affected amino acid, amino sugar, and sugar metabolism. The stress treatments affected the metabolites that were associated with the tricarboxylic acid (TCA) and urea cycles and associated amino acid biosynthesis pathway intermediates. Principal component analysis (PCA), partial least squares-discriminant analysis (PLS-DA), and heatmap analysis identified potential marker metabolites (pinitol, malic acid, and xylopyranose) that were associated with abiotic stress combinations, which could be used in breeding efforts to develop peanut cultivars that are resilient to climate change. The study will also facilitate researchers to explore different stress indicators to identify resistant cultivars for future crop improvement programs.  相似文献   
50.
The influence of the catalyst precursors (for Li2O and MgO) used in the preparation of Li‐doped MgO (Li/Mg = 0.1) on its surface properties (viz basicity, CO2 content and surface area) and activity/selectivity in the oxidative coupling of methane (OCM) process at 650–750 °C (CH4/O2 feed ratio = 3.0–8.0 and space velocity = 5140–20550 cm3 g−1 h−1) has been investigated. The surface and catalytic properties are found to be strongly affected by the precursor for Li2O (viz lithium nitrate, lithium ethanoate and lithium carbonate) and MgO (viz magnesium nitrate, magnesium hydroxide prepared by different methods, magnesium carbonate, magnesium oxide and magnesium ethanoate). Among the Li–MgO (Li/MgO = 0.1) catalysts, the Li–MgO catalyst prepared using lithium carbonate and magnesium hydroxide (prepared by the precipitation from magnesium sulfate by ammonia solution) and lithium ethanoate and magnesium acetate shows high surface area and basicity, respectively. The catalysts prepared using lithium ethanoate and magnesium ethanoate, and lithium nitrate and magnesium nitrate have very high and almost no CO2 contents, respectively. The catalysts prepared using lithium ethanoate or carbonate as precursor for Li2O, and magnesium carbonate or ethanoate, as precursor for MgO, showed a good and comparable performance in the OCM process. The performance of the other catalysts was inferior. No direct relationship between the basicity of Li‐doped MgO or surface area and its catalytic activity/selectivity in the OCM process was, however, observed. © 2000 Society of Chemical Industry  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号