首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1170篇
  免费   55篇
  国内免费   5篇
电工技术   24篇
综合类   5篇
化学工业   346篇
金属工艺   19篇
机械仪表   20篇
建筑科学   16篇
矿业工程   2篇
能源动力   51篇
轻工业   53篇
水利工程   1篇
石油天然气   2篇
无线电   117篇
一般工业技术   305篇
冶金工业   68篇
原子能技术   3篇
自动化技术   198篇
  2024年   2篇
  2023年   12篇
  2022年   55篇
  2021年   72篇
  2020年   45篇
  2019年   44篇
  2018年   74篇
  2017年   62篇
  2016年   53篇
  2015年   51篇
  2014年   52篇
  2013年   96篇
  2012年   60篇
  2011年   56篇
  2010年   38篇
  2009年   44篇
  2008年   49篇
  2007年   35篇
  2006年   31篇
  2005年   24篇
  2004年   28篇
  2003年   20篇
  2002年   35篇
  2001年   13篇
  2000年   14篇
  1999年   17篇
  1998年   17篇
  1997年   15篇
  1996年   9篇
  1995年   12篇
  1994年   6篇
  1993年   18篇
  1992年   11篇
  1991年   6篇
  1990年   9篇
  1989年   5篇
  1988年   6篇
  1987年   6篇
  1986年   3篇
  1985年   5篇
  1984年   1篇
  1983年   7篇
  1982年   1篇
  1981年   1篇
  1980年   3篇
  1979年   1篇
  1977年   4篇
  1976年   1篇
  1973年   1篇
排序方式: 共有1230条查询结果,搜索用时 0 毫秒
61.
In this report, effect of enhanced rare earth (La2O3) concentration on substitution of TeO2 within ternary TeO2‐TiO2‐La2O3 (TTL) glass system has been studied with respect to its thermal, structural, mechanical, optical, and crystallization properties with an aim to achieve glass and glass‐ceramics having rare‐earth‐rich crystalline phase for nonlinear optical and infrared photonic applications. DSC analysis (10°C/min) demonstrates a progressive increase in glass‐transition temperature (Tg) from 359 to 452°C with the increase in La2O3 content. Continuous glass network modification with transformation of [TeO4] to [TeO3/TeO3+1] units is evidenced from Raman spectra which is corroborated with XPS studies. While mechanical properties demonstrate enhancement of cross‐linking density in the network. These glasses exhibit optical transmission window extended from 0.4 to 6 μm with calculated zero dispersion wavelength (λZDW) varying from 2.41 to 2.28 μm depending upon La2O3 content. Crystallization kinetics of TTL10 (80TeO2‐10TiO2‐10La2O3 in mol%) glass has been studied via established models. Activation energy (Ea) has been evaluated and dimensionality of crystal growth (m) suggests formation of surface crystals. Glass‐ceramic with crystalline phase of La2Te6O15 has been realized in heat‐treated TTL10 glass samples (at 450°C). As predicted from DSC analysis, FESEM study unveils the formation of surface crystallized glass‐ceramics.  相似文献   
62.
The effects of oxirane groups in vinyl ester (VE) resin and reactive diluent on curing characteristics and thermal behavior of cured resins are described. Stoichiometric (0.5:1, sample A) as well as nonstoichiometric (0.5:0.85, sample B) ratios of the diglycidyl ether of bisphenol-A (DGEBA) and methacrylic acid (MA) were used for the synthesis of VE resins. Resin sample B had more residual epoxy groups because of the stoichiometric imbalance of the reactants. VE resins thus obtained were diluted with methyl methacrylate (MMA; 1:1, w/w), and controlled quantities of epoxy groups were introduced by partial replacement of MMA with glycidyl methacrylate (GMA), keeping the overall ratio of resin and reactive diluent constant. Increase of GMA content in resin A or B resulted in a decrease in gel time, indicating that the curing reaction is facilitated by the presence of epoxy groups. An increase in initiator content also reduced the gel time. In the differential scanning calorimetry (DSC) scans, a sharp curing exotherm was observed in the temperature range 107 ± 3–150 ± 1 °C. The onset temperature (Tonset) and peak exotherm temperature (Texo) decreased with increase in GMA content. Heat of curing (ΔH) also increased with increase in GMA content. A broad exotherm was observed after the initial sharp exotherm that was attributed to the etherification reaction. Cured VE resins were stable up to 250–260 °C, and started losing weight above this temperature. Rapid decomposition was observed in the temperature range 400–500 °C. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 416–423, 2001  相似文献   
63.
The influence of the catalyst precursors (for Li2O and MgO) used in the preparation of Li‐doped MgO (Li/Mg = 0.1) on its surface properties (viz basicity, CO2 content and surface area) and activity/selectivity in the oxidative coupling of methane (OCM) process at 650–750 °C (CH4/O2 feed ratio = 3.0–8.0 and space velocity = 5140–20550 cm3 g−1 h−1) has been investigated. The surface and catalytic properties are found to be strongly affected by the precursor for Li2O (viz lithium nitrate, lithium ethanoate and lithium carbonate) and MgO (viz magnesium nitrate, magnesium hydroxide prepared by different methods, magnesium carbonate, magnesium oxide and magnesium ethanoate). Among the Li–MgO (Li/MgO = 0.1) catalysts, the Li–MgO catalyst prepared using lithium carbonate and magnesium hydroxide (prepared by the precipitation from magnesium sulfate by ammonia solution) and lithium ethanoate and magnesium acetate shows high surface area and basicity, respectively. The catalysts prepared using lithium ethanoate and magnesium ethanoate, and lithium nitrate and magnesium nitrate have very high and almost no CO2 contents, respectively. The catalysts prepared using lithium ethanoate or carbonate as precursor for Li2O, and magnesium carbonate or ethanoate, as precursor for MgO, showed a good and comparable performance in the OCM process. The performance of the other catalysts was inferior. No direct relationship between the basicity of Li‐doped MgO or surface area and its catalytic activity/selectivity in the OCM process was, however, observed. © 2000 Society of Chemical Industry  相似文献   
64.
A mathematical formulation is developed to calculate the rate of corrosion of a refractory sidewall of a furnace in the presence of free convection in the melt. The free-convection phenomena considered are caused by the dependence of the melt density on its temperature and composition. The formulation involves the statement of equations for heat conduction in the refractory wall and movement of the solid-melt interface. The governing equations and the boundary conditions are transformed into nondimensional forms, and the dimensionless parameters which characterize corrosion in the presence of free convection are identified. The equations are solved by using coordinate transformation and a finite-difference method. Calculated results are presented on the shape of the solid-melt interface, temperature distribution in the corroding wall, and the amount of cooling at the outside surface of the wall. The results show how free convection in the melt interacts with heat conduction in a refractory wall to determine the rate of corrosion of the wall.  相似文献   
65.
In this study, a special experimental setup of EDSG using EDM and surface grinding machine has been developed in the laboratory to investigate the effect of seven input parameters namely tool polarity, peak current, pulse on-time, pulse off-time, rotational speed, abrasive particle size, and abrasive particle concentration on material removal rate (MRR) as performance measure of the process. The novelty of the present research work is that successful efforts have been made to machine the 6061Al/Al2O3p 10% metal matrix composites (MMC) by composite tool itself. The copper-based composite tool electrodes were fabricated by powder metallurgy route with different sizes of abrasives of silicon carbide, while 6061Al/Al2O3p 10% MMC were fabricated through stir-casting process. The research outcome will identify the important parameters and their effect on MRR of 6061Al/Al2O3p 10% composite in EDSG. The experimental results reveal that tool polarity, peak current, and rotational speed are the most influential parameters that affect MRR in EDSG process. The micro-structural and morphological analysis of machined surfaces has also been carried out to analyze the surface topography. It has been concluded that the abrasive particles substantially improves the MRR after removing the resolidified layer from the machined surface.  相似文献   
66.
The PIWI-interacting RNA (piRNA) pathway provides an RNA interference (RNAi) mechanism known from Drosophila studies to maintain the integrity of the germline genome by silencing transposable elements (TE). Aedes aegypti mosquitoes, which are the key vectors of several arthropod-borne viruses, exhibit an expanded repertoire of Piwi proteins involved in the piRNA pathway, suggesting functional divergence. Here, we investigate RNA-binding dynamics and subcellular localization of A. aegypti Piwi4 (AePiwi4), a Piwi protein involved in antiviral immunity and embryonic development, to better understand its function. We found that AePiwi4 PAZ (Piwi/Argonaute/Zwille), the domain that binds the 3′ ends of piRNAs, bound to mature (3′ 2′ O-methylated) and unmethylated RNAs with similar micromolar affinities (KD = 1.7 ± 0.8 μM and KD of 5.0 ± 2.2 μM, respectively; p = 0.05) in a sequence independent manner. Through site-directed mutagenesis studies, we identified highly conserved residues involved in RNA binding and found that subtle changes in the amino acids flanking the binding pocket across PAZ proteins have significant impacts on binding behaviors, likely by impacting the protein secondary structure. We also analyzed AePiwi4 subcellular localization in mosquito tissues. We found that the protein is both cytoplasmic and nuclear, and we identified an AePiwi4 nuclear localization signal (NLS) in the N-terminal region of the protein. Taken together, these studies provide insights on the dynamic role of AePiwi4 in RNAi and pave the way for future studies aimed at understanding Piwi interactions with diverse RNA populations.  相似文献   
67.
The aim of this study is to establish optimum machining conditions for EDSG of AISI D2 die steel through an experimental investigation using Taguchi Methodology. To achieve combined grinding and electrical discharge machining, metal matrix composite electrodes (Cu-SiCp) were processed through powder metallurgy route. A rotary spindle attachment was developed to perform the EDSG experimental runs on EDM machine. Relationships were developed between various input parameters such as peak current, speed, pulse-on time, pulse-off time, abrasive particle size, and abrasive particle concentration, and output characteristics such as material removal rate and surface roughness. The optimized parameters were further validated by conducting confirmation experiments.  相似文献   
68.
Cd2+-selective sensors have been fabricated from poly(vinyl chloride) (PVC) matrix membranes containing t-butyl thiacalix[4]arene (I) and thiacalix[4]arene (II) as electroactive materials. The addition of sodium tetraphenylborate and the plasticizer 2-nitrophenyl octyl ether has been found to improve the performance of the sensors substantially. The membranes of various compositions of the two thiacalixarenes have been investigated and it was found that the best performance was obtained for the membrane of composition II:PVC:NaTPB:NPOE in the ratio 5:120:3:150. The sensor shows a linear potential response for Cd2+ over a wide activity range 3.2 × 10−6 to 1.0 × 10−1 M with Nernstian compliance (29.5 mV decade−1 of activity) in pH range 4.5-6.5 and a fast response time of ∼8 s. The potentiometric selectivity coefficient values determined by matched potential method indicate excellent selectivity for Cd2+ ions over mono-, di- and trivalent interfering cations. The sensor exhibits adequate shelf life (∼3 months) with good reproducibility (S.D. ±0.2 mV) and can also be used in partially non-aqueous media having up to 20% (v/v) methanol, ethanol or acetone content with no significant change in the value of slope or working activity range. The sensor has been used in the potentiometric titration of Cd2+ with EDTA. The sensor could be successfully used for the quantification of cadmium in river water samples.  相似文献   
69.
Shrinkage reducing admixtures (SRA) have been developed to combat shrinkage cracking in concrete elements. While SRA has been shown to have significant benefits in reducing the magnitude of drying and autogenous shrinkage, it has been reported that SRA may cause a negative side effect as it reduces the rate of cement hydration and strength development in concrete. To examine the influence of SRA on cement hydration, this study explores the interactions between SRA and cement paste's pore solution. It is described that SRA is mainly composed of amphiphilic (i.e., surfactant) molecules that when added to an aqueous solution, accumulate at the solution-air interface and can significantly reduce the interfacial tension. However, these surfactants can also self-aggregate in the bulk solution (i.e., micellation) and this may limit the surface tension reduction capacity of SRA. In synthetic pore solutions, SRA is observed to form an oil-water-surfactant emulsion that may or may not be stable. Specifically, at concentrations above a critical threshold, the mixture of SRA and pore fluid is unstable and can separate into two distinct phases (an SRA-rich phase and an SRA-dilute phase). Further, chemical analysis of extracted pore solutions shows that addition of SRA to the mixing water depresses the dissolution of alkalis in the pore fluid. This results in a pore fluid with lower alkalinity which causes a reduction in the rate of cement hydration. This may explain why concrete containing SRA shows a delayed setting and a slower strength development.  相似文献   
70.
Stepwise methane steam reforming: a route to CO-free hydrogen   总被引:2,自引:0,他引:2  
A method for the production of clean hydrogen is demonstrated. The process consists of two steps involving the decomposition of methane to CO-free hydrogen and surface carbon in the first step followed by steam gasification of this surface carbon in the second step. This process can be operated in cycles and could be an excellent hydrogen source for fuel cells and other devices or processes requiring CO-free hydrogen.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号