首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4310篇
  免费   409篇
  国内免费   4篇
电工技术   70篇
综合类   3篇
化学工业   1180篇
金属工艺   169篇
机械仪表   286篇
建筑科学   50篇
矿业工程   2篇
能源动力   168篇
轻工业   243篇
水利工程   11篇
无线电   769篇
一般工业技术   1149篇
冶金工业   218篇
原子能技术   58篇
自动化技术   347篇
  2024年   28篇
  2023年   61篇
  2022年   72篇
  2021年   133篇
  2020年   109篇
  2019年   133篇
  2018年   126篇
  2017年   159篇
  2016年   187篇
  2015年   150篇
  2014年   226篇
  2013年   274篇
  2012年   325篇
  2011年   369篇
  2010年   225篇
  2009年   277篇
  2008年   224篇
  2007年   177篇
  2006年   133篇
  2005年   120篇
  2004年   130篇
  2003年   136篇
  2002年   118篇
  2001年   79篇
  2000年   85篇
  1999年   72篇
  1998年   90篇
  1997年   72篇
  1996年   63篇
  1995年   39篇
  1994年   41篇
  1993年   43篇
  1992年   35篇
  1991年   37篇
  1990年   21篇
  1989年   11篇
  1988年   16篇
  1987年   7篇
  1986年   9篇
  1985年   26篇
  1984年   11篇
  1982年   5篇
  1981年   7篇
  1980年   12篇
  1979年   10篇
  1977年   5篇
  1976年   8篇
  1975年   6篇
  1974年   8篇
  1970年   4篇
排序方式: 共有4723条查询结果,搜索用时 15 毫秒
71.
We report low voltage driving and highly efficient blue phosphorescence organic light emitting diodes (PHOLEDs) fabricated by soluble process. A soluble small molecule mixed host system consisting of hole transporting 4,4’,4’’ tris(N-carbazolyl)triphenylamine (TCTA) and bipolar carrier transporting 2,6-bis(3-(carbazol-9-yl)phenyl)pyridine (26DCzPPy) exhibits high solubility with smooth surface properties. Moreover, this small molecule host shows the smoothest morphological property similar to a vacuum deposited amorphous film. A low driving voltage of 5.4 V at 1000 cd/m2 and maximum external quantum efficiency 14.6% obtained in the solution processed blue PHOLEDs are useful for large area low cost manufacturing.  相似文献   
72.
A quasi-two-dimensional (2-D) threshold voltage reduction model for buried channel pMOSFETs is derived. In order to account for the coexistence of isoand anisotype junctions in a buried channel structure, we have incorporated charge sharing effect in the quasi-2-D Poisson model. The proposed model correctly predicts the effects of drain bias (V/sub DS/), counter doping layer thickness (x/sub CD/), counter doping concentration (N/sub CD/), substrate doping concentration (N/sub sub/) and source/drain junction depth (x/sub j/), and the new model performs satisfactorily in the sub-0.1 /spl mu/m regime. By using the proposed model on the threshold voltage reduction and subthreshold swing, we have obtained the process windows of the counter doping thickness and the substrate concentration. These process windows are very useful for predicting the scaling limit of the buried channel pMOSFET with known process conditions or systematic design of the buried channel pMOSFET.  相似文献   
73.
The effects of preamorphization implantation (PAI) on the interface properties between hafnium-silicate (HfSiO) gate dielectrics and silicon substrates were examined. In the case of an NH/sub 3/ nitrided interface, it was found that the PAI can improve the interface trap density (D/sub IT/) compared with the no PAI case. However, for the PAI samples, it was also found that samples with sacrificial screening oxide (Sac Ox) had worse interface properties compared with the samples without Sac Ox. It is attributed to the recoiled oxygen from Sac Ox during PAI.  相似文献   
74.
75.
76.
Inverse-synthetic-aperture-radar (ISAR) images of radar targets are useful for target identification, visualization, and the analysis of scattering centers. The major advantage of bistatic over monostatic-ISAR imaging is the reduction, in the number of computed incident angles, from hundreds to one. This advantage has already been demonstrated for a physical theory of diffraction (PTD) code, XPATCH. The bistatic-imaging technique can be extended to scattering data obtained from any time-accurate or iterative method, including low-frequency algorithms. This paper presents images from data obtained with a finite-volume time-domain (FVTD) code. It also provides relations between (1) the range and resolution of the bistatic scattering data in the Fourier domain, and (2) the pixel resolution and image extent in the physical domain for the down-range and cross-range directions. A tapering function is applied in the Fourier domain, to dampen ringing effects. Results are shown for a trapezoidal plate, a cone-sphere, and a square-aperture cavity  相似文献   
77.
This paper presents a simple process to integrate thin‐film inductors with a bottom NiFe magnetic core. NiFe thin films with a thickness of 2 to 3 μm were deposited by sputtering. A polyimide buffer layer and shadow mask were used to relax the stress of the NiFe films. The fabricated double spiral thin‐film inductor showed an inductance of 0.49 μH and a Q factor of 4.8 at 8 MHz. The DC‐DC converter with the monolithically integrated thin‐film inductor showed comparable performances to those with sandwiched magnetic layers. We simplified the integration process by eliminating the planarization process for the top magnetic core. The efficiency of the DC‐DC converter with the monolithic thin‐film inductor was 72% when the input voltage and output voltage were 3.5 V and 6 V, respectively, at an operating frequency of 8 MHz.  相似文献   
78.
Using conventional methods to synthesize magnetic nanoparticles (NPs) with uniform size is a challenging task. Moreover, the degradation of magnetic NPs is an obstacle to practical applications. The fabrication of silica‐shielded magnetite NPs on carbon nitride nanotubes (CNNTs) provides a possible route to overcome these problems. While the nitrogen atoms of CNNTs provide selective nucleation sites for NPs of a particular size, the silica layer protects the NPs from oxidation. The morphology and crystal structure of NP–CNNT hybrid material is investigated by transmission electron microscopy (TEM) and X‐ray diffraction. In addition, the atomic nature of the N atoms in the NP–CNNT system is studied by near‐edge X‐ray absorption fine structure spectroscopy (nitrogen K‐edge) and calculations of the partial density of states based on first principles. The structure of the silica‐shielded NP–CNNT system is analyzed by TEM and energy dispersive X‐ray spectroscopy mapping, and their magnetism is measured by vibrating sample and superconducting quantum interference device magnetometers. The silica shielding helps maintain the superparamagnetism of the NPs; without the silica layer, the magnetic properties of NP–CNNT materials significantly degrade over time.  相似文献   
79.
Here, a pyrolytically controlled antioxidizing photosynthesis coenzyme, β‐Nicotinamide adenine dinucleotide, reduced dipotassium salt (NADH) for a stable n‐type dopant for carbon nanotube (CNT) transistors is proposed. A strong electron transfer from NADH, mainly nicotinamide, to CNTs takes place during pyrolysis so that not only the type conversion from p‐type to n‐type is realized with 100% of reproducibility but also the on/off ratio of the transistor is significantly improved by increasing on‐current and/or decreasing off‐current. The device was stable up to a few months with negligible current changes under ambient conditions. The n‐type characteristics were completely recovered to an initial doping level after reheat treatment of the device.  相似文献   
80.
Wearable strain sensors are widely researched as core components in electronic skin. However, their limited capability of detecting only a single axial strain, and their low sensitivity, stability, opacity, and high production costs hinder their use in advanced applications. Herein, multiaxially highly sensitive, optically transparent, chemically stable, and solution‐processed strain sensors are demonstrated. Transparent indium tin oxide and zinc oxide nanocrystals serve as metallic and insulating components in a metal–insulator matrix and as active materials for strain gauges. Synergetic sensitivity‐ and stability‐reinforcing agents are developed using a transparent SU‐8 polymer to enhance the sensitivity and encapsulate the devices, elevating the gauge factor up to over 3000 by blocking the reconnection of cracks caused by the Poisson effect. Cross‐shaped patterns with an orthogonal crack strategy are developed to detect a complex multiaxial strain, efficiently distinguishing strains applied in various directions with high sensitivity and selectivity. Finally, all‐transparent wearable strain sensors with Ag nanowire electrodes are fabricated using an all‐solution process, which effectively measure not only the human motion or emotion, but also the multiaxial strains occurring during human motion in real time. The strategies can provide a pathway to realize cost‐effective and high‐performance wearable sensors for advanced applications such as bio‐integrated devices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号