首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   589篇
  免费   38篇
电工技术   3篇
化学工业   315篇
金属工艺   3篇
机械仪表   13篇
建筑科学   26篇
矿业工程   1篇
能源动力   14篇
轻工业   85篇
水利工程   6篇
无线电   17篇
一般工业技术   89篇
冶金工业   7篇
原子能技术   2篇
自动化技术   46篇
  2024年   1篇
  2023年   25篇
  2022年   118篇
  2021年   107篇
  2020年   33篇
  2019年   25篇
  2018年   32篇
  2017年   22篇
  2016年   24篇
  2015年   21篇
  2014年   23篇
  2013年   39篇
  2012年   20篇
  2011年   33篇
  2010年   19篇
  2009年   19篇
  2008年   16篇
  2007年   8篇
  2006年   11篇
  2005年   6篇
  2004年   5篇
  2003年   5篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1984年   1篇
  1981年   1篇
排序方式: 共有627条查询结果,搜索用时 15 毫秒
31.
This work deals with the additive manufacturing and characterization of hydroxyapatite scaffolds mimicking the trabecular architecture of cancellous bone. A novel approach was proposed relying on stereolithographic technology, which builds foam-like ceramic scaffolds by using three-dimensional (3D) micro-tomographic reconstructions of polymeric sponges as virtual templates for the manufacturing process. The layer-by-layer fabrication process involves the selective polymerization of a photocurable resin in which hydroxyapatite particles are homogeneously dispersed. Irradiation is performed by a dynamic mask that projects blue light onto the slurry. After sintering, highly-porous hydroxyapatite scaffolds (total porosity ~0.80, pore size 100-800 µm) replicating the 3D open-cell architecture of the polymeric template as well as spongy bone were obtained. Intrinsic permeability of scaffolds was determined by measuring laminar airflow alternating pressure wave drops and was found to be within 0.75-1.74 × 10−9 m2, which is comparable to the range of human cancellous bone. Compressive tests were also carried out in order to determine the strength (~1.60 MPa), elastic modulus (~513 MPa) and Weibull modulus (m = 2.2) of the scaffolds. Overall, the fabrication strategy used to print hydroxyapatite scaffolds (tomographic imaging combined with digital mirror device [DMD]-based stereolithography) shows great promise for the development of porous bioceramics with bone-like architecture and mass transport properties.  相似文献   
32.
Cannabis is now legal in many countries and while numerous studies have reported on its impact on cognition and appetite regulation, none have examined fatty acid metabolism in young cannabis users. We conducted an exploratory analysis to evaluate cannabis impact on fatty acid metabolism in cannabis users (n = 21) and non-cannabis users (n = 16). Serum levels of some saturated and monounsaturated fatty acids, including palmitic, palmitoleic, and oleic acids were higher in cannabis users compared to nonusers. As palmitic acid can be derived from diet or lipogenesis from sugars, we evaluated lipogenesis using a de novo lipogenesis index (palmitate/linoleic acid) and carbon-specific isotope analysis, which allows for the determination of fatty acid 13C signature. The significantly higher de novo lipogenesis index in the cannabis users group along with a more enriched 13C signature of palmitic acid suggested an increase in lipogenesis. In addition, while serum glucose concentration did not differ between groups, pyruvate and lactate were lower in the cannabis user group, with pyruvate negatively correlating with palmitic acid. Furthermore, the endocannabinoid 2-arachidonoylglycerol was elevated in cannabis users and could contribute to lipogenesis by activating the cannabinoid receptor 1. Because palmitic acid has been suggested to increase inflammation, we measured peripheral cytokines and observed no changes in inflammatory cytokines. Finally, an anti-inflammatory metabolite of palmitic acid, palmitoylethanolamide was elevated in cannabis users. Our results suggest that lipogenic activity is increased in cannabis users; however, future studies, including prospective studies that control dietary intake are required.  相似文献   
33.
34.
Benign prostatic hyperplasia (BPH) is an age-related chronic disorder, characterized by the hyperproliferation of prostatic epithelial and stromal cells, which drives prostate enlargement. Since BPH aetiology and progression have been associated with the persistence of an inflammatory stimulus, induced both by Nuclear Factor-kappa B (NF-κB) activation and reactive oxygen species (ROS) production, the inhibition of these pathways could result in a good tool for its clinical treatment. This study aimed to evaluate the antioxidant and anti-inflammatory activity of a combined formulation of Serenoa repens and Urtica dioica (SR/UD) in an in vitro human model of BPH. The results confirmed both the antioxidant and the anti-inflammatory effects of SR/UD. In fact, SR/UD simultaneously reduced ROS production, NF-κB translocation inside the nucleus, and, consequently, interleukin 6 (IL-6) and interleukin 8 (IL-8) production. Furthermore, the effect of SR/UD was also tested in a human androgen-independent prostate cell model, PC3. SR/UD did not show any significant antioxidant and anti-inflammatory effect, but was able to reduce NF-κB translocation. Taken together, these results suggested a promising role of SR/UD in BPH and BPH-linked disorder prevention.  相似文献   
35.
The mechanisms by which neoplastic cells disseminate from the primary tumor to metastatic sites, so-called metastatic organotropism, remain poorly understood. Epithelial–mesenchymal transition (EMT) plays a role in cancer development and progression by converting static epithelial cells into the migratory and microenvironment-interacting mesenchymal cells, and by the modulation of chemoresistance and stemness of tumor cells. Several findings highlight that pathways involved in EMT and its reverse process (mesenchymal–epithelial transition, MET), now collectively called epithelial–mesenchymal plasticity (EMP), play a role in peritoneal metastases. So far, the relevance of factors linked to EMP in a unique peritoneal malignancy such as pseudomyxoma peritonei (PMP) has not been fully elucidated. In this review, we focus on the role of epithelial–mesenchymal dynamics in the metastatic process involving mucinous neoplastic dissemination in the peritoneum. In particular, we discuss the role of expression profiles and phenotypic transitions found in PMP in light of the recent concept of EMP. A better understanding of EMP-associated mechanisms driving peritoneal metastasis will help to provide a more targeted approach for PMP patients selected for locoregional interventions involving cytoreductive surgery and hyperthermic intraperitoneal chemotherapy.  相似文献   
36.
Next-generation sequencing (NGS) is a cost-effective technology capable of screening several genes simultaneously; however, its application in a clinical context requires an established workflow to acquire reliable sequencing results. Here, we report an optimized NGS workflow analyzing 22 lung cancer-related genes to sequence critical samples such as DNA from formalin-fixed paraffin-embedded (FFPE) blocks and circulating free DNA (cfDNA). Snap frozen and matched FFPE gDNA from 12 non-small cell lung cancer (NSCLC) patients, whose gDNA fragmentation status was previously evaluated using a multiplex PCR-based quality control, were successfully sequenced with Ion Torrent PGM™. The robust bioinformatic pipeline allowed us to correctly call both Single Nucleotide Variants (SNVs) and indels with a detection limit of 5%, achieving 100% specificity and 96% sensitivity. This workflow was also validated in 13 FFPE NSCLC biopsies. Furthermore, a specific protocol for low input gDNA capable of producing good sequencing data with high coverage, high uniformity, and a low error rate was also optimized. In conclusion, we demonstrate the feasibility of obtaining gDNA from FFPE samples suitable for NGS by performing appropriate quality controls. The optimized workflow, capable of screening low input gDNA, highlights NGS as a potential tool in the detection, disease monitoring, and treatment of NSCLC.  相似文献   
37.
In recent years, environmental and economic reasons have motivated the development of transition metal‐free carbon‐carbon bond forming reactions and some excellent reviews have covered this research area of particular interest for the pharmaceutical industry. However, none of these reviews has been specifically dedicated to summarize and discuss the results achieved in the rapidly growing field of the transition metal‐free direct (hetero)arylation reactions of heteroarenes. This review, which covers the literature from 2008 to 2014, aims to provide a thorough insight into the synthetic and mechanistic aspects of these atom economic and environmentally benign reactions also highlighting their advantages and possible disadvantages compared to conventional methods for the synthesis of arylheteroarenes and biheteroaryls via transition metal‐catalyzed reactions.

  相似文献   

38.
This article is devoted to the exploration of the benefits of a new ultrafast confocal pump-probe technique, able to study the photophysics of different structured materials with nanoscale resolution. This tool offers many advantages over standard stationary microscopy techniques because it directly interrogates excited state dynamics in molecules, providing access to both radiative and non-radiative deactivation processes at a local scale. In this paper we present a few different examples of its application to organic semiconductor systems. The first two are focussed on the study of the photophysics of phase-separated polymer blends: (i) a blue-emitting polyfluorene (PFO) in an inert matrix of PMMA and (ii) an electron donor polythiophene (P3HT) mixed with an electron acceptor fullerene derivative (PCBM). The experimental results on these samples demonstrate the capability of the technique to unveil peculiar interfacial dynamics at the border region between phase-segregated domains, which would be otherwise averaged out using conventional pump-probe spectroscopy. The third example is the study of the photophysics of isolated mesoscopic crystals of the PCBM molecule. Our ultrafast microscope could evidence the presence of two distinctive regions within the crystals. In particular, we could pinpoint for the first time areas within the crystals showing photobleaching/stimulated emission signals from a charge-transfer state.  相似文献   
39.
Osteosarcoma (OS) is a skeletal tumor affecting mainly children and adolescents. The presence of distance metastasis is frequent and it is localized preferentially to the lung, representing the main reason for death among patients. The therapeutic approaches are based on surgery and chemotherapeutics. However, the drug resistance and the side effects associated with the chemotherapy require the identification of new therapeutic approaches. The understanding of the complex biological scenario of the osteosarcoma will open the way for the identification of new targets for its treatment. Recently, a great interest of scientific community is for extracellular vesicles (EVs), that are released in the tumor microenvironment and are important regulators of tumor proliferation and the metastatic process. At the same time, circulating extracellular vesicles can be exploited as diagnostic and prognostic biomarkers, and they can be loaded with drugs as a new therapeutic approach for osteosarcoma patients. Thus, the characterization of OS-related EVs could represent a way to convert these vesicles from antagonists for human health into therapeutic and/or diagnostic agents.  相似文献   
40.
Thanks to their reduced size, great surface area, and capacity to interact with cells and tissues, nanomaterials present some attractive biological and chemical characteristics with potential uses in the field of biomedical applications. In this context, graphene and its chemical derivatives have been extensively used in many biomedical research areas from drug delivery to bioelectronics and tissue engineering. Graphene-based nanomaterials show excellent optical, mechanical, and biological properties. They can be used as a substrate in the field of tissue engineering due to their conductivity, allowing to study, and educate neural connections, and guide neural growth and differentiation; thus, graphene-based nanomaterials represent an emerging aspect in regenerative medicine. Moreover, there is now an urgent need to develop multifunctional and functionalized nanomaterials able to arrive at neuronal cells through the blood-brain barrier, to manage a specific drug delivery system. In this review, we will focus on the recent applications of graphene-based nanomaterials in vitro and in vivo, also combining graphene with other smart materials to achieve the best benefits in the fields of nervous tissue engineering and neural regenerative medicine. We will then highlight the potential use of these graphene-based materials to construct graphene 3D scaffolds able to stimulate neural growth and regeneration in vivo for clinical applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号