首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2366篇
  免费   87篇
电工技术   17篇
化学工业   596篇
金属工艺   36篇
机械仪表   77篇
建筑科学   62篇
矿业工程   2篇
能源动力   50篇
轻工业   222篇
水利工程   26篇
石油天然气   4篇
无线电   189篇
一般工业技术   349篇
冶金工业   531篇
原子能技术   25篇
自动化技术   267篇
  2023年   41篇
  2022年   153篇
  2021年   151篇
  2020年   48篇
  2019年   49篇
  2018年   61篇
  2017年   59篇
  2016年   70篇
  2015年   43篇
  2014年   65篇
  2013年   129篇
  2012年   88篇
  2011年   125篇
  2010年   84篇
  2009年   101篇
  2008年   83篇
  2007年   73篇
  2006年   55篇
  2005年   54篇
  2004年   40篇
  2003年   49篇
  2002年   32篇
  2001年   23篇
  2000年   27篇
  1999年   35篇
  1998年   188篇
  1997年   111篇
  1996年   91篇
  1995年   40篇
  1994年   46篇
  1993年   44篇
  1992年   16篇
  1991年   12篇
  1990年   9篇
  1989年   21篇
  1988年   11篇
  1987年   6篇
  1986年   12篇
  1985年   15篇
  1984年   6篇
  1983年   8篇
  1982年   8篇
  1981年   12篇
  1980年   4篇
  1979年   4篇
  1977年   7篇
  1976年   15篇
  1974年   3篇
  1969年   3篇
  1967年   7篇
排序方式: 共有2453条查询结果,搜索用时 15 毫秒
31.
Low power fault tolerance design techniques trade reliability to reduce the area cost and the power overhead of integrated circuits by protecting only a subset of their workload or their most vulnerable parts. However, in the presence of faults not all workloads are equally susceptible to errors. In this paper, we present a low power fault tolerance design technique that selects and protects the most susceptible workload. We propose to rank the workload susceptibility as the likelihood of any error to bypass the logic masking of the circuit and propagate to its outputs. The susceptible workload is protected by a partial Triple Modular Redundancy (TMR) scheme. We evaluate the proposed technique on timing-independent and timing-dependent errors induced by permanent and transient faults. In comparison with unranked selective fault tolerance approach, we demonstrate a) a similar error coverage with a 39.7% average reduction of the area overhead or b) a 86.9% average error coverage improvement for a similar area overhead. For the same area overhead case, we observe an error coverage improvement of 53.1% and 53.5% against permanent stuck-at and transition faults, respectively, and an average error coverage improvement of 151.8% and 89.0% against timing-dependent and timing-independent transient faults, respectively. Compared to TMR, the proposed technique achieves an area and power overhead reduction of 145.8% to 182.0%.  相似文献   
32.
Hybrid solar cells based on light absorbing semiconducting polymers infiltrated in nanocrystalline TiO2 electrodes, have emerged as an attractive concept, combining benefits of both low material and processing costs with well controlled nano‐scale morphology. However, after over ten years of research effort, power conversion efficiencies remain around 0.5%. Here, a spectroscopic and device based investigation is presented, which leads to a new optimization route where by functionalization of the TiO2 surface with a molecular electron acceptor promotes photoinduced electron transfer from a low‐band gap polymer(poly[2,6‐(4,4‐bis‐(2‐ethylhexyl)‐4H‐cyclopenta[2,1‐b;3,4‐b0]dithiophene)‐alt‐4,7‐(2,1,3‐benzothiadia‐zole)] (PCPDTBT) to the metal oxide. This boosts the infrared response and the power conversion efficiency to over 1%. As a further step, by “co‐functionalizing” the TiO2 surface with the electron acceptor and an organic dye‐sensitizer, panchromatic spectral photoresponse is achieved in the visible to near‐IR region. This novel architecture at the heterojunction opens new material design possibilities and represents an exciting route forward for hybrid photovoltaics.  相似文献   
33.
n+-SnO2/a-SiC/metal photodiodes with voltage-controlled photosensitivity have been realized by using both carbon-rich and silicon-rich a-SiC alloys. Carbon-rich devices show a response peak located at 530 nm independent of the applied voltage, which in turn only affects the peak height. At variance, in silicon-rich structures the response peak is located at 480, 510, and 570 nm when the applied voltage is -4, 0, and +4 V, respectively, with corresponding quantum yield values of 17, 3, and 25%. For explaining the observed behavior we present a simple model of n+-SnO2/a-SiC/metal diodes, which takes into account light-induced modulation of n+-SnO2/a-SiC barrier height, primary photocurrent generation and photoconductivity effects  相似文献   
34.
The unprecedented growth in mobile data usage is posing significant challenges to cellular operators. One key challenge is how to provide quality of service to subscribers when their residing cell is experiencing a significant amount of traffic, i.e. becoming a traffic hotspot. In this paper, we perform an empirical study on data hotspots in today’s cellular networks using a 9-week cellular dataset with 734K+ users and 5327 cell sites. Our analysis examines in details static and dynamic characteristics, predictability, and causes of data hotspots, and their correlation with call hotspots. We show that using standard machine learning methods, future hotspots can be accurately predicted from past observations. We believe the understanding of these key issues will lead to more efficient and responsive resource management and thus better QoS provision in cellular networks. To the best of our knowledge, our work is the first to empirically characterize traffic hotspots in today’s cellular networks.  相似文献   
35.
Biomaterials research usually focuses on functional and structural mimicry of the extracellular matrix or tissue hierarchy and morphology. Most recently, material‐induced modulatory effects on the immune system to arouse a healing response is another upcoming strategy. Approaches, however, that integrate both aspects to induce healing and facilitate specific cell adhesion are so far little explored. This study exploits manifold but chemical crosslinker free functionalization of hydrophilic and nonadhesive electrospun fiber surfaces with peptides for controlled cell adhesion, and with neutra­lizing antibodies targeting the master cytokine tumor necrosis factor (TNF) to dampen proinflammatory reactions by the fiber adherent cells. It is demonstrated that cell attachment and immunomodulatory properties of a textile can be tailored at the same time to generate meshes that combine immunosuppressive activity with specific cell adhesion properties.  相似文献   
36.
In this letter we investigate the packet delay statistics of a fully reliable selective repeat ARQ scheme by considering a discrete time Markov channel with non-instantaneous feedback and assigned round-trip delay m. Our focus is on studying the impact of the arrival process on the delay experienced by a packet. An exact model is introduced to represent the system constituted by the transmitter buffer, the m round-trip slots, and the channel state. By means of this model, we evaluate and discuss the delay statistics and we analyze the impact of the system parameters, in particular the packet arrival rate, on the delay statistics  相似文献   
37.
The role of excess photon energy on charge generation efficiency in bulk heterojunction solar cells is still an open issue for the organic photovoltaic community. Here, the spectral dependence of the internal quantum efficiency (IQE) for a poly[2,6‐(4,4‐bis‐(2‐ethylhexyl)‐4H‐cyclopenta[2,1‐b;3,4‐b]­dithiophene)‐alt‐4,7‐(2,1,3‐benzothiadiazole)]:6,6‐phenyl‐C61‐butyric acid methyl ester (PCPDTBT:PC60BM)‐based solar cell is derived combining accurate optoelectronic characterization and comprehensive optical modeling. This joint approach is shown to be essential to get reliable values of the IQE. Photons with energy higher than the bandgap of the donor material can effectively contribute to enhance the IQE of the solar cell. This holds true independently of the device architecture, reflecting an intrinsic property of the active material. Moreover, the nanomorphology of the bulk heterojunction plays a crucial role in determining the IQE spectral dependence: the coarser and more crystalline, the lesser the gain in IQE upon high energy excitation.  相似文献   
38.
Electron scattering by a single barrier is predicted to reveal singularities as the magnetic field is changed, because the number of electron collisions with the barrier dramatically increases as chaotic orbits around the barrier are changed into periodic orbits. To test this experimentally we have measured the magnetoresistance of AlGaAs/GaAs heterostructures with a two-dimensional electron gas and a lateral lattice containing a macroscopic number of oval-shaped antidots fabricated using electron lithography. Reproducible fluctuations in the magnetoresistance are observed at low field, which are due to the oscillations of the number of electron collisions with the antidots. The number of collisions N before the electron escapes from the antidot has been calculated as a function of B in an electric field. The position of the maxima in N(B) obtained from calculations and experiment are in reasonable agreement.  相似文献   
39.
This paper presents a 0.18-/spl mu/m CMOS direct-conversion IC realized for the Universal Mobile Telecommunication System (UMTS). The chip comprises a variable gain low-noise amplifier, quadrature mixers, variable gain amplifiers, and local oscillator generation circuits. The solution is based on very high dynamic range front-end blocks, a low-power superharmonic injection-locking technique for quadrature generation and continuous-time dc offset removal. Measured performances are an overall gain variable between 21 and 47 dB, 5.6 dB noise figure, -2 dBm out-of-band IIP3, -10 dBm in-band IIP3, 44.8-dBm minimum IIP2, and -155-dBc/Hz phase noise at 135 MHz from carrier frequency, while drawing 21 mA from a 1.8-V supply.  相似文献   
40.
Memristive devices based on mixed ionic–electronic resistive switches have an enormous potential to replace today's transistor‐based memories and Von Neumann computing architectures thanks to their ability for nonvolatile information storage and neuromorphic computing. It still remains unclear however how ionic carriers are propagated in amorphous oxide films at high local electric fields. By using memristive model devices based on LaFeO3 with either amorphous or epitaxial nanostructures, we engineer the structural local bonding units and increase the oxygen‐ionic diffusion coefficient by one order of magnitude for the amorphous oxide, affecting the resistive switching operation. We show that only devices based on amorphous LaFeO3 films reveal memristive behavior due to their increased oxygen vacancy concentration. We achieved stable resistive switching with switching times down to microseconds and confirm that it is predominantly the oxygen‐ionic diffusion character and not electronic defect state changes that modulate the resistive switching device response. Ultimately, these results show that the local arrangement of structural bonding units in amorphous perovskite films at room temperature can be used to largely tune the oxygen vacancy (defect) kinetics for resistive switches (memristors) that are both theoretically challenging to predict and promising for future memory and neuromorphic computing applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号