首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   630篇
  免费   41篇
电工技术   3篇
化学工业   320篇
金属工艺   6篇
机械仪表   12篇
建筑科学   23篇
矿业工程   1篇
能源动力   20篇
轻工业   84篇
水利工程   7篇
无线电   23篇
一般工业技术   89篇
冶金工业   20篇
原子能技术   2篇
自动化技术   61篇
  2024年   1篇
  2023年   26篇
  2022年   120篇
  2021年   108篇
  2020年   33篇
  2019年   25篇
  2018年   32篇
  2017年   22篇
  2016年   25篇
  2015年   21篇
  2014年   24篇
  2013年   35篇
  2012年   21篇
  2011年   33篇
  2010年   22篇
  2009年   20篇
  2008年   16篇
  2007年   12篇
  2006年   11篇
  2005年   8篇
  2004年   6篇
  2003年   6篇
  2002年   3篇
  2001年   1篇
  2000年   4篇
  1999年   2篇
  1998年   3篇
  1997年   5篇
  1996年   10篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1990年   1篇
  1986年   1篇
  1984年   1篇
  1981年   1篇
  1979年   1篇
  1976年   3篇
  1973年   1篇
排序方式: 共有671条查询结果,搜索用时 15 毫秒
91.
Molecularly engineered novel dopant‐free hole‐transporting materials for perovskite solar cells (PSCs) combined with mixed‐perovskite (FAPbI3)0.85(MAPbBr3)0.15 (MA: CH3NH3+, FA: NH=CHNH3+) that exhibit an excellent power conversion efficiency of 18.9% under AM 1.5 conditions are investigated. The mobilities of FA‐CN, and TPA‐CN are determined to be 1.2 × 10?4 cm2 V?1 s?1 and 1.1 × 10?4 cm2 V?1 s?1, respectively. Exceptional stability up to 500 h is measured with the PSC based on FA‐CN. Additionally, it is found that the maximum power output collected after 1300 h remained 65% of its initial value. This opens up new avenue for efficient and stable PSCs exploring new materials as alternatives to Spiro‐OMeTAD.  相似文献   
92.
Objective: This study aimed to design and characterize an inhalable dry powder of ciprofloxacin or levofloxacin combined with the mucolytics acetylcysteine and dornase alfa for the management of pulmonary infections in patients with cystic fibrosis.

Methods: Ball milling, homogenization in isopropyl alcohol and spray drying processes were used to prepare dry powders for inhalation. Physico-chemical characteristics of the dry powders were assessed via thermogravimetric analysis, differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), X-ray diffractometry and scanning electron microscopy. The particle size distribution, dissolution rate and permeability across Calu-3 cell monolayers were analyzed. The aerodynamic parameters of dry powders were determined using the Andersen cascade impactor (ACI).

Results: After the micronization process, the particle sizes of the raw materials significantly decreased. X-ray and DSC results indicated that although ciprofloxacin showed no changes in its crystal structure, the structure of levofloxacin became amorphous after the micronization process. FT-IR spectra exhibited the characteristic peaks for ciprofloxacin and levofloxacin in all formulations. The dissolution rates of micro-homogenized and spray-dried ciprofloxacin were higher than that of untreated ciprofloxacin. ACI results showed that all formulations had a mass median aerodynamic diameter less than 5?μm; however, levofloxacin microparticles showed higher respirability than ciprofloxacin powders did. The permeability of levofloxacin was higher than those of the ciprofloxacin formulations.

Conclusion: Together, our study showed that these methods could suitably characterize antibiotic and mucolytic-containing dry powder inhalers.  相似文献   
93.
Magnetic crystals formed by 2D layers interacting by weak van der Waals forces are currently a hot research topic. When these crystals are thinned to nanometric size, they can manifest strikingly different magnetic behavior compared to the bulk form. This can be the result of, for example, quantum electronic confinement effects, the presence of defects, or pinning of the crystallographic structure in metastable phases induced by the exfoliation process. In this work, an investigation of the magnetism of micromechanically cleaved CrCl3 flakes with thickness >10 nm is performed. These flakes are characterized by superconducting quantum interference device magnetometry, surface-sensitive X-ray magnetic circular dichroism, and spatially resolved magnetic force microscopy. The results highlight an enhancement of the CrCl3 antiferromagnetic interlayer interaction that appears to be independent of the flake size when the thickness is tens of nanometers. The estimated exchange field is 9 kOe, representing an increase of ≈900% compared to the one of the bulk crystals. This effect can be attributed to the pinning of the high-temperature monoclinic structure, as recently suggested by polarized Raman spectroscopy investigations in thin (8–35 nm) CrCl3 flakes.  相似文献   
94.
95.
Journal of Materials Science: Materials in Electronics - This study reports the electrical properties of Nd-doped cerium oxide (CeO2) films synthesized by microwave assisted hydrothermal using a...  相似文献   
96.
97.
This research has 6 fundamental aims: (i) to present a modified version of Taylor's interpolation, one that is more effective and faster than the original; (ii) outline the capability of artificial neural networks (ANNs) to perform an optimal functional approximation of the digital elevation model reconstruction from a satellite map, using a small and independent sample of Global Positioning System observations; (iii) demonstrate experimentally how ANNs outperform the traditional and most used algorithm for the height interpolation (Taylor's interpolation); (iv) introduce a new ANN, the Conic Net, able to outperform the results of the classic and more known multilayer perceptron; (v) determine that Conic Nets, even when using Taylor's modified interpolation as input features, are able to optimally approximate the heights with one order of magnitude more than the original satellite map; and (vi) make evident the possibility to interpolate the DEM heights through an ANN, which learns a data set of known points.  相似文献   
98.
The L12E, L12K, Q88E, and Q88K variants of spinach plastocyanin have been electrochemically investigated. The effects of insertion of net charges near the metal site on the thermodynamics of protonation and detachment from the copper(I) ion of the His87 ligand have been evaluated. The mutation-induced changes in transition enthalpy cannot be explained by electrostatic considerations. The existence of enthalpy/entropy (H/S) compensation within the protein series indicates that solvent-reorganization effects control the differences in transition thermodynamics. Once these compensating contributions are factorized out, the resulting modest differences in transition enthalpies turn out to be those that can be expected on purely electrostatic grounds. Therefore, this work shows that the acid transition in cupredoxins involves a reorganization of the H-bonding network within the hydration sphere of the molecule in the proximity of the metal center that dominates the observed transition thermodynamics and masks the differences that are due to protein-based effects.  相似文献   
99.
The proton uptake of 18 compositions in the perovskite family (Ba,Sr,La)(Fe,Co,Zn,Y)O3‐δ, perovskites, which are potential cathode materials for protonic ceramic fuel cells (PCFCs), is investigated by thermogravimetry. Hydration enthalpies and entropies are derived, and the doping trends are explored. The uptake is found to be largely determined by the basicity of the oxide ions. Partial substitution of Zn on the B‐site strongly enhances proton uptake, while Co substitution has the opposite effect. The proton concentration in Ba0.95La0.05Fe0.8Zn0.2O3‐δ is found to be 10% per formula unit at 250 °C, 5.5% at 400 °C, and 2.3% at 500 °C, which are the highest values reported so far for a mixed‐conducting perovskite exhibiting hole, proton, and oxygen vacancy transport. A comprehensive set of thermodynamic data for proton uptake in (Ba,Sr,La)(Fe,Co,Zn,Y)O3‐δ is determined. Defect interactions between protons and holes partially delocalized from the B‐site transition metal to the adjacent oxide ions decrease the proton uptake. From these results, guidelines for the optimization of PCFC cathode materials are derived.  相似文献   
100.
Nanoporous Si as an efficient thermoelectric material   总被引:1,自引:0,他引:1  
Lee JH  Galli GA  Grossman JC 《Nano letters》2008,8(11):3750-3754
Room-temperature thermoelectric properties of n-type crystalline Si with periodically arranged nanometer-sized pores are computed using a combination of classical molecular dynamics for lattice thermal conductivity and ab initio density functional theory for electrical conductivity, Seebeck coefficient, and electronic contribution to the thermal conductivity. The electrical conductivity is found to decrease by a factor of 2-4, depending on doping levels, compared to that of bulk due to confinement. The Seebeck coefficient S yields a 2-fold increase for carrier concentrations less than 2 x 10(19) cm(-3), above which S remains closer to the bulk value. Combining these results with our calculations of lattice thermal conductivity, we predict the figure of merit ZT to increase by 2 orders of magnitude over that of bulk. This enhancement is due to the combination of the nanometer size of pores which greatly reduces the thermal conductivity and the ordered arrangement of pores which allows for only a moderate reduction in the power factor. We find that while alignment of pores is necessary to preserve power factor values comparable to those of bulk Si, a symmetric arrangement is not required. These findings indicate that nanoporous semiconductors with aligned pores may be highly attractive materials for thermoelectric applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号