首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   1篇
电工技术   1篇
化学工业   30篇
金属工艺   1篇
机械仪表   2篇
建筑科学   1篇
能源动力   1篇
轻工业   5篇
一般工业技术   8篇
冶金工业   2篇
  2022年   2篇
  2021年   2篇
  2020年   3篇
  2019年   1篇
  2018年   2篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   5篇
  2012年   3篇
  2011年   2篇
  2010年   5篇
  2009年   3篇
  2008年   6篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2001年   1篇
  1995年   2篇
  1993年   1篇
排序方式: 共有51条查询结果,搜索用时 15 毫秒
11.
Surface properties of carbon nanotubes (CNTs) were altered by purification with nitric acid, sulfuric acid, ammonium hydroxide, and hydrogen peroxide. As‐received and purified CNT‐based conductive poly (ethylene terephthalate) composites were prepared with a twin‐screw extruder. The effects of CNT purification on the surface properties of the CNTs and on the morphology and electrical and mechanical properties of CNT‐based composites were investigated. Surface energy measurements showed that the acidic component of the surface energies of the CNTs increased after purification. According to Fourier transform infrared (FTIR) spectroscopy, the purification resulted in the formation of oxygen‐containing functional groups on the surfaces of the CNTs. Electron spectroscopy for chemical analysis results indicate the removal of the metallic catalyst residues and an increase in the oxygen content of the CNT surfaces as a result of the purification procedure. X‐ray diffraction analyses revealed a change in the crystalline structure of the CNTs after purification. All of the composites prepared with the purified CNTs had higher electrical resistivities and tensile and impact strength values than the composites based on the as‐received CNTs because of the functional groups and defect sites formed on the surfaces of the CNTs during purification. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   
12.
The purpose of this study is to derive the apparent interfacial shear strength of short glass fiber reinforced acrylonitrile‐butadiene‐styrene/polyamide 6 (PA6) blends with different PA6 contents. Tensile stress‐strain curves and fiber length distributions are utilized within a continuum micromechanics approach which involves a unified parameter for fiber length distribution efficiency represented as a function of strain. The unique combination of predicted micromechanical parameters is capable of accurately reproducing the mechanical response of the composite to applied strain. In this way, the influence of PA6 on interfacial zone is revealed by outcomes of the predictive method and validated by scanning electron microscopy observations. Favored intermolecular interactions in presence of PA6 chains result in the formation of a PA6 sheathing layer on glass fiber surfaces which in turn causes a drop in the apparent interfacial shear strength. The reason behind is shown to be the shift of the fracture zone from fiber/matrix interface to sheathing layer/matrixinterphase. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   
13.
In this study, it was aimed to improve electrical conductivity and mechanical properties of conductive polymer composites, composed of polypropylene (PP), poly(ethylene terephthalate) (PET), and carbon nanotubes (CNT). Grinding, a type of solid state processing technique, was applied to PP/PET and PP/PET/CNT systems to reduce average domain size of blend phases and to improve interfacial adhesion between these phases. Surface energy measurements showed that carbon nanotubes might be selectively localized at PET phase of immiscible blend systems. Grinding technique exhibited improvement in electrical conductivity and mechanical properties of PP/PET/CNT systems at low PET compositions. Ground composites molded below the melting temperature of PET exhibited higher tensile strength and modulus values than those prepared above the melting temperature of PET. According to SEM micrographs, micron‐sized domain structures were obtained with ground composite systems in which PET was the minor phase. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   
14.
Diglycidyl ether of bisphenol A type epoxy resin-polyether polyol-organically treated montmorillonite ternary nanocomposites were synthesized in this study. The effects of addition of polyether polyol as an impact modifier on morphological, thermal and mechanical properties of nanocomposites were investigated by X-ray diffraction, scanning electron microscopy (SEM), differential scanning calorimetry, impact and tensile testing. The results showed that organically treated montmorillonite is intercalated by epoxy, since the interlayer spacing expanded from 1.83 to 3.82 nm upon nanocomposite synthesis. The addition of polyether polyol impact modifier had no effect on the interlayer spacing. SEM examination showed that polyol forms an immiscible phase in the epoxy matrix. Thermal characterization of nanocomposites indicated an increase in Tg with respect to both polyether polyol and montmorillonite contents. The impact strength of the samples with no clay was improved approximately 160% upon adding 7 wt% polyether polyol. In polyether polyol modified nanocomposites, the impact and tensile strengths decreased with respect to increasing amount of montmorillonite and showed a maximum with respect to the polyether polyol content at constant clay loading. The Young's modulus of the nanocomposites exhibited an increase with respect to the montmorillonite loading and showed a maximum with respect to the polyol content at each clay loading.  相似文献   
15.
The study aims to produce poly(methyl methacrylate) (PMMA)-based lower density syntactic foams with hollow glass microspheres (HGMs) and to improve their mechanical properties by the addition of polyhedral oligomeric silsesquioxanes (POSSs) while maintaining the thermal properties of the neat polymer. First to understand the effect of POSS addition, PMMA–POSS composites with octaisobutyl and octaphenyl POSS were produced through extrusion. Higher relative flexural and impact strengths were obtained with POSS addition to PMMA. Obtaining more enhanced properties with octaphenyl POSS, PMMA-HGM-POSS hybrid syntactic foams were prepared with this additive. In general, the specific flexural strength and modulus of the PMMA syntactic foams were improved with the POSS loading, while the lower density and thermal properties of the PMMA syntactic foams were maintained. PMMA hybrid syntactic foams with 15 wt % HGMs and 0.25 wt % POSS exhibited 37.6% improvement in the specific flexural modulus with respect to the neat PMMA. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48368.  相似文献   
16.
Tutuncu  Lokman  Yucedogru  Recep  Sarisoy  Idris 《Scientometrics》2022,127(5):2547-2576
Scientometrics - The study utilizes a unique dataset of 16,575 research papers published in 68 national Business and Economics journals to investigate editorial bias towards insiders in Turkish...  相似文献   
17.
In today's digital economy, web-based integration of the enterprises to form an e-supply chain is a critical weapon for orchestrating the whole supply chain towards competitiveness. This paper intends to discuss the requirements for forming an e-supply chain from different perspectives, such as integration with the legacy systems, timing and prior presence of ERP (enterprise resources planning) systems, BPR (business process re-engineering) needs of internal and external business processes and business intelligence/decision support needs. A look at technical knowledge and structure to construct an e-supply chain is provided. Challenges involved in forming an e-supply chain are also briefly mentioned as a separate section in this paper. During the study, requirements are gathered by making a review of recent literature.  相似文献   
18.
Exact solutions for stresses in functionally graded pressure vessels   总被引:2,自引:0,他引:2  
Closed-form solutions for stresses and displacements in functionally graded cylindrical and spherical vessels subjected to internal pressure alone are obtained using the infinitesimal theory of elasticity. The material stiffness obeying a simple power law is assumed to vary through the wall thickness and Poisson's ratio is assumed constant. Stress distributions depending on an inhomogeneity constant are compared with those of the homogeneous case and presented in the form of graphs. The inhomogeneity constant, which includes continuously varying volume fraction of the constituents, is empirically determined. The values used in this study are arbitrarily chosen to demonstrate the effect of inhomogeneity on stress distribution.  相似文献   
19.
Loosely crosslinked cationic polyelectrolytes (polyquats) with super-water-sorption abilities are presented, for the first time. Hydrogels obtained by radically initiated copolymerization of N,N-diallyl, N,N-dimethyl ammonium chloride (DADMAC) with N-vinyl 2-pyrrolidone (NVP) in presence of N,N,N′,N′-tetraallyl piperazinium dichloride (TAP) as crosslinker showed reasonably high equilibrium swelling ratios, as high as those for poly(acrylic acid)-based super absorbents.The highest swelling ratios (up to 360) were attained by fully cationic hydrogels derived from DADMAC and 0.5% TAP. The hydrogels with 0.5–5% crosslinkers exhibited rapid expansion in neutral water, so that the equilibrium swelling values were attained within 2–3 min. The crosslinking densities of the gels were estimated by Flory-type swelling model using “phantom network elasticity” for the elastic contribution. This estimation revealed low crosslinking efficiencies of TAP (0.24–0.35) due to its double cationic charge.In the study “the salt effect” and effects of the comonomer ratios and crosslinker contents on the swellings were also investigated.  相似文献   
20.
Surfaces of multiwalled carbon nanotubes (CNT) were functionalized by treatment with strong acid mixture (purification) followed by modification with sodium dodecyl sulfate, poly(ethylene glycol) (PEG), and diglycidyl ether of Bisphenol A (DGEBA). Poly(ethylene terephthalate) (PET)‐based conductive polymer composites were prepared by using these CNT by means of melt mixing with a twin screw extruder. Amount of carboxylic acid groups on the CNT surface increased after acid treatment but decreased with surface modification due to the consumption of these groups during the chemical reactions between the surface modifiers and CNT surface. Fourier transformed infrared spectroscopy (FTIR) and nuclear magnetic resonance analyses of the composites revealed the increase in the interactions between PET and CNT surface after treatment with PEG and DGEBA. Mechanical strength of the composites prepared with modified CNT were higher than that of the untreated CNT‐filled composite owing to the enhanced interactions between PET and CNT. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号