首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12807篇
  免费   393篇
  国内免费   58篇
电工技术   260篇
综合类   16篇
化学工业   2274篇
金属工艺   367篇
机械仪表   361篇
建筑科学   219篇
矿业工程   73篇
能源动力   703篇
轻工业   1171篇
水利工程   190篇
石油天然气   82篇
无线电   1623篇
一般工业技术   2771篇
冶金工业   1544篇
原子能技术   198篇
自动化技术   1406篇
  2024年   39篇
  2023年   177篇
  2022年   505篇
  2021年   504篇
  2020年   409篇
  2019年   407篇
  2018年   553篇
  2017年   512篇
  2016年   483篇
  2015年   280篇
  2014年   446篇
  2013年   886篇
  2012年   518篇
  2011年   676篇
  2010年   540篇
  2009年   531篇
  2008年   476篇
  2007年   389篇
  2006年   331篇
  2005年   263篇
  2004年   244篇
  2003年   219篇
  2002年   180篇
  2001年   143篇
  2000年   147篇
  1999年   156篇
  1998年   355篇
  1997年   231篇
  1996年   251篇
  1995年   219篇
  1994年   182篇
  1993年   171篇
  1992年   143篇
  1991年   151篇
  1990年   114篇
  1989年   108篇
  1988年   130篇
  1987年   109篇
  1986年   89篇
  1985年   115篇
  1984年   94篇
  1983年   107篇
  1982年   99篇
  1981年   88篇
  1980年   78篇
  1979年   54篇
  1978年   46篇
  1977年   56篇
  1976年   76篇
  1975年   32篇
排序方式: 共有10000条查询结果,搜索用时 11 毫秒
991.
The transition period in dairy cows (3 weeks prepartum until 3 weeks postpartum) is associated with substantial mobilization of energy stores, which is often associated with metabolic diseases. Nicotinic acid (NA) is an antilipolytic and lipid-lowering compound used to treat dyslipidaemia in humans, and it also reduces non-esterified fatty acids in cattle. In mice the G-protein coupled receptor 109A (GPR109A) ligand NA positively affects the secretion of adiponectin, an important modulator of glucose and fat metabolism. In cattle, the corresponding data linking NA to adiponectin are missing. Our objective was to examine the effects of NA on adiponectin and AMPK protein abundance and the expression of mRNAs of related genes such as chemerin, an adipokine that enhances adiponectin secretion in vitro. Differentiated bovine adipocytes were incubated with pertussis toxin (PTX) to verify the involvement of GPR signaling, and treated with 10 or 15 µM NA for 12 or 24 h. NA increased adiponectin concentrations (p ≤ 0.001) and the mRNA abundances of GPR109A (p ≤ 0.05) and chemerin (p ≤ 0.01). Pre-incubation with PTX reduced the adiponectin response to NA (p ≤ 0.001). The NA-stimulated secretion of adiponectin and the mRNA expression of chemerin in the bovine adipocytes were suggestive of GPR signaling-dependent improved insulin sensitivity and/or adipocyte metabolism in dairy cows.  相似文献   
992.
Polymeric hindered amine light stabilizers (HALSs), in which the HALS functionality was attached to the terminal isocyanate chain end of poly(styryl‐co‐styryl isocyanate), were synthesized by a two‐step process. First, cinnamoyl azide was prepared and copolymerized with styrene by a free‐radical copolymerization method. Polymeric low‐molecular‐weight and high‐molecular‐weight 2,2,6,6‐tetramethyl‐4‐pipridinol‐graft‐poly(styryl‐co‐styryl isocyanate) and 4‐amino‐2,2,6,6‐tetramethyl piperidine‐graft‐poly(styryl‐co‐styryl isocyanate) were synthesized by a grafting method. The photodegradation and stabilization of different grades of high‐impact polystyrene (HIPS) were studied at 55°C in air at different time intervals, and the photostabilizing efficiency of polymeric HALSs was compared with conventional light stabilizers, such as 2,2,6,6‐tetramethyl‐4‐pipridinol and bis(2,2,6,6‐tetramethyl‐4‐piperidinyl)sebacate. Polymeric HALSs showed significant improvements in the photostabilization of HIPS. The solubility and diffusion coefficient of polymeric HALSs were studied. The morphological changes in HIPS caused by photooxidation were also studied. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1126–1138, 2003  相似文献   
993.
The interplay of viscous, gravity and capillary forces determines the flow behavior of two or more phases through porous materials. In this study, a rule-based dynamic network model is developed to simulate two-phase flow in three-dimensional porous media. A cubic network analog of porous medium is used with cubic bodies and square cross-section throats. The rules for phase movement and redistribution are devised to honor the imbibition and drainage physics at pore scale. These rules are based on the pressure field within the porous medium that is solved for by applying mass conservation at each node. The pressure field governs the movement and flow rates of the fluids within the porous medium. Film flow has been incorporated in a novel way. A pseudo-percolation model is proposed for low but non-zero capillary number (ratio of viscous to capillary forces). The model is used to study primary drainage with constant inlet flow rate and constant inlet pressure boundary conditions. Non-wetting phase front dynamics, apparent wetting residuals (Swr), and relative permeability are computed as a function of capillary number (Nca), viscosity ratio (M), and pore-throat size distribution. The simulation results are compared with experimental results from the literature. Depending upon the flow rate and viscosity ratio, the displacement front shows three distinct flow patterns—stable, viscous fingering and capillary fingering. Capillary desaturation curves (Swr vs. Nca) depend on the viscosity ratio. It is shown that at high flow rates (or high Nca), relative permeability assumes a linear dependence upon saturation. Pseudo-static capillary pressure curve is also estimated (by using an invasion percolation model) and is compared with the dynamic capillary pressure obtained from the model.  相似文献   
994.
The presence of alkali ions has reportedly improved the performance of CIGS/CZTS–based thin-film solar cells. The out-diffusion of the alkali ion, in particular, Na, from the glass substrate offers a facile scalable route of supplying the alkali ions during the growth of the absorber layer. In this work, we demonstrate the diffusion of different alkali ions (Li/Na/K) from composition tuned glasses with intentionally incorporated excess alkali ions into a thin Mo film, typically used as a bottom electrode in solar cells. We also evaluate the physical, mechanical, and thermal properties of the glasses for suitability as a substrate in thin-film deposition. The out-diffusion of alkali ions to the overlayer is found to be critically influenced by the composition and the local structure of the glasses. The Na ions exhibit the highest extent of diffusion among the alkali ions present in glass substrates, while that for the K-ions is the lowest. For the glasses with mixed alkali ions, the presence of Li facilitated the out-diffusion of Na, whereas K ions appear to inhibit the same. Differently with the existing reports, we show that the activation energy and the presence of Ca ions as additional modifiers play a crucial role in the transport mechanism of the ions. In addition, the synthesized glasses exhibit hardness of the order 5-7 GPa, density ~2.55 g cm-3. The glass transition temperature lies between 535 and 580°C and the coefficient of thermal expansion 8.5-10 ppm/K, which is highly suitable for use as substrates in thin-film solar cells.  相似文献   
995.
Bioceramics have been widely utilized for orthopaedic applications in which the biocompatibility and mechanical properties of the materials are vital characteristics to be considered for their clinical use. Till date, extensive studies have been devoted to developing a range of scientific ways for tailoring the microstructure of bioceramics in order to attain the trade-off of mechanical properties and biocompatibility of the final product. Owing to low reactivity, earlier stabilization and longer functional life of bioceramic, the developed implants are capable of replicating the mechanical behaviour of original bone. As the safety of the patient and its ultimate functionality are the ultimate goal of the selected implant material hence, the present literature survey investigates and brings forth the important aspects associated to the mechanical, biological and microstructural characteristics of bioceramics employed in orthopaedic applications. The review paper majorly focuses on effective utilization of various materials as an additive in bioceramics and processing techniques used for enhancement of properties, enabling the use of material in orthopaedic applications. The influence of various additives on the microstructure, mechanical properties and biological performance of developed bioceramics orthopaedic implants has been elaborately discussed. Furthermore, future prospects are proposed to promote further innovations in bioceramics research.  相似文献   
996.
Staphylococcal-associated device-related infections (DRIs) represent a significant clinical challenge causing major medical and economic sequelae. Bacterial colonization, proliferation, and biofilm formation after adherence to surfaces of the indwelling device are probably the primary cause of DRIs. To address this issue, we incorporated constructs of silica-binding peptide (SiBP) with ClyF, an anti-staphylococcal lysin, into functionalized coatings to impart bactericidal activity against planktonic and sessile Staphylococcus aureus. An optimized construct, SiBP1-ClyF, exhibited improved thermostability and staphylolytic activity compared to its parental lysin ClyF. SiBP1-ClyF-functionalized coatings were efficient in killing MRSA strain N315 (>99.999% within 1 h) and preventing the growth of static and dynamic S. aureus biofilms on various surfaces, including siliconized glass, silicone-coated latex catheter, and silicone catheter. Additionally, SiBP1-ClyF-immobilized surfaces supported normal attachment and growth of mammalian cells. Although the recycling potential and long-term stability of lysin-immobilized surfaces are still affected by the fragility of biological protein molecules, the present study provides a generic strategy for efficient delivery of bactericidal lysin to solid surfaces, which serves as a new approach to prevent the growth of antibiotic-resistant microorganisms on surfaces in hospital settings and could be adapted for other target pathogens as well.  相似文献   
997.
Bitter-taste receptors (T2Rs) have emerged as key players in host–pathogen interactions and important modulators of oral innate immunity. Previously, we reported that T2R14 is expressed in gingival epithelial cells (GECs) and interacts with competence stimulating peptides (CSPs) secreted by the cariogenic Streptococcus mutans. The underlying mechanisms of the innate immune responses and physiological effects of T2R14 on Gram-positive bacteria are not well characterized. In this study, we examined the role of T2R14 in internalization and growth inhibitory effects on Gram-positive bacteria, namely Staphylococcus aureus and S. mutans. We utilized CRISPR-Cas9 T2R14 knockdown (KD) GECs as the study model to address these key physiological mechanisms. Our data reveal that the internalization of S. aureus is significantly decreased, while the internalization of S. mutans remains unaffected upon knockdown of T2R14 in GECs. Surprisingly, GECs primed with S. mutans CSP-1 resulted in an inhibition of growth for S. aureus, but not for S. mutans. The GECs infected with S. aureus induced T2R14-dependent human β-defensin-2 (hBD-2) secretion; however, S. mutans–infected GECs did not induce hBD-2 secretion, but induced T2R14 dependent IL-8 secretion. Interestingly, our results show that T2R14 KD affects the cytoskeletal reorganization in GECs, thereby inhibiting S. aureus internalization. Our study highlights the distinct mechanisms and a direct role of T2R14 in influencing physiological responses to Gram-positive bacteria in the oral cavity.  相似文献   
998.
999.
Herein, we present the dielectric and electrical conductivity properties of the partially miscible polymer blend prepared using pyrene functionalized polyaniline (pf‐PANI) and poly(vinylidene fluoride‐co‐hexafluoro propylene) (PVDF‐co‐HFP). The blend mostly retains the fluorescent nature of pf‐PANI as well as can be moldable and possesses good damping property. The dielectric properties have been investigated as a function of temperature at three different frequencies and the plausible origin of polarization responsible for dielectric behavior in this blend has been identified. The experimental results of dielectric measurements are compared with theoretical models and discussed. The surface morphology of the samples has been examined with a scanning electron microscope. The electrical conductivity has also been studied as a function of temperature and explained in terms of hopping of charge carriers/interconnected networks. The combined dielectric and conductivity results together with scanning electron microscope micrographs, reveal that there is hindrance to achieve percolation threshold even after pf‐PANI addition of 57 vol % and subsequent thermal treatment. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44077.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号