首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   144篇
  免费   6篇
  国内免费   4篇
电工技术   7篇
综合类   1篇
化学工业   31篇
金属工艺   5篇
机械仪表   11篇
建筑科学   6篇
能源动力   6篇
轻工业   5篇
无线电   16篇
一般工业技术   38篇
冶金工业   6篇
自动化技术   22篇
  2023年   5篇
  2022年   9篇
  2021年   5篇
  2020年   10篇
  2019年   5篇
  2018年   9篇
  2017年   4篇
  2016年   9篇
  2015年   12篇
  2014年   11篇
  2013年   19篇
  2012年   4篇
  2011年   8篇
  2010年   6篇
  2009年   8篇
  2008年   7篇
  2007年   3篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1998年   5篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1991年   1篇
  1989年   2篇
排序方式: 共有154条查询结果,搜索用时 15 毫秒
31.
CD40/CD40 ligand interactions have a central role in the induction of both humoral and cellular immunity. In this study, we examined whether a plasmid expressing CD40 ligand/trimer (CD40LT) could enhance immune responses in vivo. BALB/c mice were injected with plasmid expressing beta-galactosidase DNA with or without CD40LT DNA or IL-12 DNA, and immune responses were assessed. Mice vaccinated with beta-gal DNA plus CD40LT DNA or IL-12 DNA had a striking increase in Ag-specific production of IFN-gamma, cytolytic T cell activity, and IgG2a Ab. The mechanism by which CD40LT DNA enhanced these responses was further assessed by treating vaccinated mice with anti-IL-12 mAb or CTLA-4 Ig (CTLA4Ig). Production of IFN-gamma and CTL activity was abrogated by these treatments, suggesting that CD40LT DNA was mediating its effects on IFN-gamma and CTL activity through induction of IL-12 and enhancement of B7 expression, respectively. Physiologic relevance for the ability of CD40LT DNA to enhance immune responses by the aforementioned pathways was shown in two in vivo models. First, with regard to CTL activity, mice vaccinated with CD40LT DNA did not develop metastatic tumor following challenge with lethal dose of tumor. Moreover, in a mouse model requiring IL-12-dependent production of IFN-gamma, mice vaccinated with soluble Leishmania Ag and CD40LT DNA were able to control infection with Leishmania major. These data suggest that CD40LT DNA could be a useful vaccine adjuvant for diseases requiring cellular and/or humoral immunity.  相似文献   
32.
Srinivasan  Ashwin  Bain  Michael  Baskar  A. 《Machine Learning》2022,111(7):2435-2487
Machine Learning - We propose the identification of feedback mechanisms in biological systems by learning logical rules in R. Thomas’ Kinetic Logic (Thomas and D’Ari in Biological...  相似文献   
33.
34.
In this paper, optimization procedures based on the genetic algorithm, tabu search, ant colony algorithm and particle swarm optimization Algorithm were developed for the optimization of machining parameters for milling operation. This paper describes development and utilization of an optimization system, which determines optimum machining parameters for milling operations. An objective function based on maximum profit in milling operation has been used. An example has been presented at the end of the paper to give a clear picture from the application of the system and its efficiency. The results are compared and analysed using the method of feasible directions and handbook recommendations.  相似文献   
35.
In the present review, we have selected advances in electrospinning nanofibers that we envision to be embedded in textiles and wearables. These nanofibers have been proven to be excellent options for applications such as power generation, sensing, and communication. Their similitude with already known woven meshes makes these fibers perfect for electronically active textiles.These fibers offer well known characteristics such as mechanical flexibility, high surface area-to-volume ratio, light weight and can be tuned by carefully selecting the active materials in the precursor solution. Here we will discuss polymers with electroactive, piezoelectric, triboelectric and their composites that have been used in fiber structures by using the electrospinning technique.  相似文献   
36.
37.
38.
The Journal of Supercomputing - In recent years, new technology developments have been proposed and implemented to support people with hearing impairment and speech loss. It is a severe...  相似文献   
39.
Due to unique properties and unlimited possible applications, graphene has attracted abundant interest in the areas of nanobiotechnology. Recently, much work has focused on the synthesis and properties of graphene. Here we show that a successful reduction of graphene oxide (GO) using spinach leaf extract (SLE) as a simultaneous reducing and stabilizing agent. The as-prepared SLE-reduced graphene oxide (S-rGO) was characterized by ultraviolet–visible spectroscopy and Fourier transform infrared spectroscopy. Dynamic light scattering technique was used to determine the average size of GO and S-rGO. Scanning electron microscopy and atomic force microscopy images provide clear surface morphological evidence for the formation of graphene. The resulting S-rGO has a mostly single-layer structure, is stable, and has significant water solubility. In addition, the biocompatibility of graphene was investigated using cell viability, leakage of lactate dehydrogenase and alkaline phosphatase activity in primary mouse embryonic fibroblast (PMEFs) cells. The results suggest that the biologically synthesized graphene has significant biocompatibility with PMEF cells, even at a higher concentration of 100 μg/mL. This method uses a ‘green’, natural reductant and is free of additional stabilizing reagents; therefore, it is an environmentally friendly, simple, and cost-effective method for the fabrication of soluble graphene. This study could open up a promising view for substitution of hydrazine by a safe, biocompatible, and powerful reduction for the efficient deoxygenation of GO, especially in large-scale production and potential biomedical applications.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号