首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8839篇
  免费   417篇
  国内免费   81篇
电工技术   195篇
综合类   89篇
化学工业   1621篇
金属工艺   218篇
机械仪表   296篇
建筑科学   351篇
矿业工程   13篇
能源动力   279篇
轻工业   463篇
水利工程   38篇
石油天然气   44篇
武器工业   2篇
无线电   1759篇
一般工业技术   1594篇
冶金工业   1214篇
原子能技术   88篇
自动化技术   1073篇
  2023年   94篇
  2022年   136篇
  2021年   192篇
  2020年   147篇
  2019年   131篇
  2018年   193篇
  2017年   192篇
  2016年   192篇
  2015年   195篇
  2014年   289篇
  2013年   536篇
  2012年   445篇
  2011年   484篇
  2010年   385篇
  2009年   446篇
  2008年   450篇
  2007年   409篇
  2006年   374篇
  2005年   319篇
  2004年   301篇
  2003年   304篇
  2002年   256篇
  2001年   230篇
  2000年   212篇
  1999年   197篇
  1998年   469篇
  1997年   314篇
  1996年   218篇
  1995年   144篇
  1994年   125篇
  1993年   146篇
  1992年   82篇
  1991年   79篇
  1990年   70篇
  1989年   50篇
  1988年   53篇
  1987年   54篇
  1986年   59篇
  1985年   32篇
  1984年   32篇
  1983年   20篇
  1981年   40篇
  1980年   22篇
  1979年   21篇
  1978年   26篇
  1977年   40篇
  1976年   43篇
  1975年   12篇
  1974年   12篇
  1971年   12篇
排序方式: 共有9337条查询结果,搜索用时 15 毫秒
991.
992.
In this study, we have coated tin oxide (SnO2) nanowires with a Cu shell layer via the sputtering method and subsequently investigated the effects of thermal annealing. The annealing-induced changes in morphologies, microstructures, and compositions of the resulting core-shell nanowires were characterized by using scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), and energydispersive X-ray spectroscopy (EDX). The Cu shell layers were agglomerated to form clusters, which were mainly comprised of the Cu2O phase. For the first time, a hysteresis loop indicating weak ferromagnetism was observed from the pure SnO2 nanowires. Both the coercivity and the retentivity in the hysteresis loop were slightly increased by Cu-sputtering, indicating a very slight enhancement of ferromagnetism. Also, the ferromagnetic behavior was significantly enhanced by thermal annealing. We discuss the possible mechanisms of annealing-induced enhancement of ferromagnetism in the SiO2/Cu core-shell nanowires, which include the generation of Cu2O phase, Cu-doping into the SnO2 lattice, and the generation of oxygen vacancies in SnO2 core nanowires.  相似文献   
993.
A swirling flow has been induced in a premixed gas-fired impinging circular flame jet by adding two tangential air flows to the main axial air/fuel flow. The flame jet system was considered to be small-scale and operated under low-pressure, laminar flow conditions. The effects of Reynolds number of the air/butane mixture and nozzle-to-plate distance on the heating performance of the flame were studied and compared with the heat-flux distributions on an impingement plate under different operating conditions. The whole investigation was conducted under the stoichiometric air/fuel condition (i.e., equivalence ratio, Φ = 1) with the Reynolds number being varied from 800 to 1700, and nozzle-to-plate distance being selected between 1.5 and 4.0. The introduction of swirl to small-scale, low-pressure, laminar premixed gas-fired impinging circular flame jets is the method for enhancing their thermal performances. The heat-flux distribution on the impingement plate was more uniform and the flame temperatures essentially higher when compared with a similar flame jet system without induced swirl.  相似文献   
994.
T.T. Chow  W. He  J. Ji  A.L.S. Chan 《Solar Energy》2007,81(1):123-130
The rapid development and sales volume of photovoltaic (PV) modules has created a promising business environment in the foreseeable future. However, the current electricity cost from PV is still several times higher than from the conventional power generation. One way to shorten the payback period is to bring in the hybrid photovoltaic–thermal (PVT) technology, which multiplies the energy outputs from the same collector surface area. In this paper, the performance evaluation of a new water-type PVT collector system is presented. The thermal collection making use of the thermosyphon principle eliminates the expense of pumping power. Experimental rigs were successfully built. A dynamic simulation model of the PVT collector system was developed and validated by the experimental measurements, together with two other similar models developed for PV module and solar hot-water collector. These were then used to predict the energy outputs and the payback periods for their applications in the subtropical climate, with Hong Kong as an example. The numerical results show that a payback period of 12 year for the PVT collector system is comparable to the side-by-side system, and is much shorter than the plain PV application. This is a great encouragement in marketing the PVT technology.  相似文献   
995.
996.
Nano-crystalline metal oxides (Co3O4, CuO, and NiO) are synthesized as anode materials for lithium-ion batteries by an ultrasonic spray pyrolysis method. The effects of calcination temperature on the morphology, crystallite size and electrochemical properties of the metal oxides are investigated. X-ray diffraction (XRD) studies show that the crystallite size varies with the final calcination temperature. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations reveal that the calcination temperature strongly influences the morphology of the prepared metal oxides and this results in different electrochemical performance. The existence of a nano-scale microstructure for the prepared metal oxides has a strong relationship with irreversible capacity and capacity retention.  相似文献   
997.
This investigation is concerned with the variation of structure in the catalyst layer for porous gas-diffusion electrodes. The pore-size distribution and the total pore volume of the electrode are measured by a mercury penetration method. A model that accounts for this incomplete wetting electrode is solved by an orthogonal collocation method and matched with experimental observations. The numerical solution indicates that the effectiveness factor drops noticeably under high current density when the agglomerate radius is greater than 40 μm. When the agglomerate radius is smaller than 1.2 μm, however, the effect of ionic transport becomes important. The maximum reaction rate occurs at carbon-paper/ catalyst-layer interface when the effective conductivity of the electrolyte is larger than that of the solid phase. If the effective conductivity of the electrolyte is smaller, then the maximum reaction rate occurs at the electrode/electrolyte interface.  相似文献   
998.
This paper presents a thermodynamic model to evaluate the coefficient of performance (COP) of an air-cooled screw chiller under various operating conditions. The model accounts for the real process phenomena, including the capacity control of screw compressors and variations in the heat-transfer coefficients of an evaporator and a condenser at part load. It also contains an algorithm to determine how the condenser fans are staged in response to a set-point condensing temperature. The model parameters are identified, based on the performance data of chiller specifications. The chiller model is validated using a wide range of operating data of an air-cooled screw chiller. The difference between the measured and modelled COPs is within ±10% for 86% of the data points. The chiller’s COP can increase by up to 115% when the set-point condensing temperature is adjusted, based on any given outdoor temperature. Having identified the variation in the chiller’s COP, a suitable strategy is proposed for air-cooled screw chillers to operate at maximum efficiency as much as possible when they have to satisfy a building’s cooling-load.  相似文献   
999.
Ordered flower-like zinc oxide (ZnO) nanostructures were fabricated via a facile microwave and ultrasonic combined technique. The product was characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and selected area electron diffraction pattern (SAED). The flower-like ZnO nanostructures were assembled by a central petal and six symmetrical petals which grew radially from the center. The flower-like ZnO sample showed an enhanced photocatalytic performance compared with the ZnO microrods for the methylene blue (MB) degradation, which could be attributed to its special structure feature. Au/ZnO and Ag/ZnO nanocomposites were also synthesized and exhibited enhanced photocatalytic efficiency after decorating noble metal nanoparticles on the surface of flower-like ZnO nanostructures.  相似文献   
1000.
The main aim of this study was to simultaneously increase tensile strength and ductility of AZ31/AZ91 hybrid magnesium alloy with Si3N4 nanoparticles. AZ31/AZ91 hybrid alloy nanocomposite containing Si3N4 nanoparticle reinforcement was fabricated using solidification processing followed by hot extrusion. The nanocomposite exhibited similar grain size to the monolithic hybrid alloy, reasonable Si3N4 nanoparticle distribution, non-dominant (0 0 0 2) texture in the longitudinal direction, and 13% higher hardness than the monolithic hybrid alloy. Compared to the monolithic hybrid alloy (in tension), the nanocomposite simultaneously exhibited higher yield strength, ultimate strength, failure strain and work of fracture (+12%, +5%, +64% and +71%, respectively). Compared to the monolithic hybrid alloy (in compression), the nanocomposite exhibited higher yield strength and ultimate strength, lower failure strain and higher work of fracture (+35%, +4%, −6% and +6%, respectively). The beneficial effects of Si3N4 nanoparticle addition on the enhancement of tensile and compressive properties of AZ31/AZ91 hybrid alloy are investigated in this paper.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号