首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7378篇
  免费   593篇
  国内免费   53篇
电工技术   119篇
综合类   60篇
化学工业   1671篇
金属工艺   272篇
机械仪表   501篇
建筑科学   161篇
矿业工程   11篇
能源动力   294篇
轻工业   624篇
水利工程   43篇
石油天然气   20篇
武器工业   1篇
无线电   1304篇
一般工业技术   1698篇
冶金工业   408篇
原子能技术   86篇
自动化技术   751篇
  2024年   14篇
  2023年   115篇
  2022年   197篇
  2021年   290篇
  2020年   198篇
  2019年   199篇
  2018年   223篇
  2017年   280篇
  2016年   290篇
  2015年   259篇
  2014年   353篇
  2013年   510篇
  2012年   488篇
  2011年   583篇
  2010年   446篇
  2009年   422篇
  2008年   405篇
  2007年   300篇
  2006年   289篇
  2005年   237篇
  2004年   197篇
  2003年   192篇
  2002年   179篇
  2001年   171篇
  2000年   143篇
  1999年   133篇
  1998年   196篇
  1997年   141篇
  1996年   111篇
  1995年   83篇
  1994年   61篇
  1993年   40篇
  1992年   59篇
  1991年   38篇
  1990年   28篇
  1989年   38篇
  1988年   19篇
  1987年   22篇
  1986年   12篇
  1985年   11篇
  1984年   9篇
  1983年   5篇
  1982年   5篇
  1981年   3篇
  1979年   6篇
  1977年   4篇
  1976年   11篇
  1975年   2篇
  1972年   2篇
  1914年   2篇
排序方式: 共有8024条查询结果,搜索用时 15 毫秒
91.
The high melt viscosity of polypropylene was studied by grafting bifunctional monomers, 1,6‐hexanediol diacrylate (HDDA) and tripropylene glycol diacrylate (TPGDA), onto homopolypropylene (HPP) and random ter‐polypropylene (RTPP) under electron‐beam irradiation. Creation of the high‐melt‐viscosity polypropylene was possible at low radiation dosage and low monomer content, under a prohibition of both radiation degradation and homopolymerization. TPGDA monomer was more effective in increasing the melt viscosity of HPP compared with RTPP, whereas HDDA monomer was more effective for enhancing the melt viscosity of RTPP. Such different effects of monomers on melt viscosity may arise from different monomer structures, namely, TPGDA has additional three methyl groups, but HDDA has no methyl groups. Electron‐beam radiation technology, on an increase of the melt viscosity, was much more effective in HPP than RTPP, when compared with virgin polymers. Modified RTPP and HPP with high melt viscosity were capable of foaming with numerous fine cells, of which the modified HPP with 1.5 mmol TPGDA and 0.5 kGy could create more spherical foam cells and its bending strength was 1.5 times more than that of the foamed RTPP. POLYM. ENG. SCI., 46:431–437, 2006. © 2006 Society of Plastics Engineers.  相似文献   
92.
A new type of polyimide/silica (PI/SiO2) hybrid composite films was prepared by blending polymer‐modified colloidal silica with the semiflexible polyimide. Polyimide was solution‐imidized at higher temperature than the glass transition temperature (Tg) using 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (BPDA) and 4,4′‐diaminodiphenyl ether (ODA). The morphological observation on the prepared hybrid films by scanning electron microscopy (SEM) pointed to the existence of miscible organic–inorganic phase, which resulted in improved mechanical properties compared with pure PI. The incorporation of the silica structures in the PI matrix also increased both Tg and thermal stability of the resulting films. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2053–2061, 2006  相似文献   
93.
Phase Behavior and Mechanical Properties of Siloxane-Urethane Copolymer   总被引:1,自引:1,他引:1  
Two series of siloxane-urethane copolymers were prepared from polydimethylsiloxane (PDMS) with a molecular weight of 1000 or 1800 which was used as a soft segment, 4,4′-diphenylmethane diisocyanate (MDI) and 1,4-butanediol (1,4-BD). Differential scanning calorimetry (DSC) demonstrated that the position (Tgs) and breadth (ΔB) of soft-segment glass transition of copolymers remained constant as the hard-segment content increased. Heat capacities at soft-segment glass transition of the copolymer (ΔCp) were 0.195∼0.411 J/gC and heat capacities of pure PDMS (ΔCp0) were 0.571∼0.647 J/gC, leading to the various ΔCp/ΔCp0 ratios. The ΔCp/ΔCp0 ratios decreased as the increasing of hard-segment content, showing poor phase separation. The FTIR spectrum confirmed the occurrence of hydrogen bonding in ether end-group of pure PDMS. The ether group of the soft segment led to interfacial mixing between soft and hard segments. The tan δ of the soft segment determined by dynamic mechanical testing (DMA) also identified the mixing of soft and hard segments. The mechanical properties of the copolymer were directly related to either the soft and hard segment contents or the chain lengths of soft and hard segments. The hard segment that reinforced the soft segment and interfacial thickness between soft and hard segment dominated the mechanical properties.  相似文献   
94.
We determined the optimal reaction conditions to minimize the energy cost and the quantities of by‐products for a poly(ethylene terephthalate) process by using the iterative dynamic programming (IDP) algorithm. Here, we employed a sequence of three reactor models: the semibatch transesterification reactor model, the semibatch prepolymerization reactor model, and the rotating‐disc‐type polycondensation reactor model. We selectively chose or developed the reactor models by incorporating experimentally verified kinetic models reported in the literature. We established the model for the entire reactor system by connecting the three reactor models in series and by resolving some joint problems arising when different types of reactor models were interconnected. On the basis of the simulation results of the reactor system, we scrutinized the cause and effect between the reaction conditions and the final quality of the polymer product. Here, we set up the optimization strategy by using IDP on the basis of the integrated reactor model, and the process variables with significant influence on the properties of polymer were selected as control variables with the help of a simulation study. With this method, we could refine the reaction conditions at the end of each iteration step by contracting the spectra of control regions, and the iteration process finally stopped when the profile of the optimal trajectory converged. We also took the constraints on the control variables into account to guarantee polymer quality and to suppress side reactions. Constituting six different strategies by setting weighting vectors differently, we examined the differences in optimal trajectories, the trend of optimality, and the quality of the final polymer product. For each of the strategies, we conducted the optimization to examine whether the number‐average degree of polymerization approached the desired value. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 993–1008, 2002  相似文献   
95.
The sorption equilibrium of dissolved copper by spherical partially-coagulated gels of calcium alginate was investigated in this work. The gels were formed by dispensing a viscous algin (food grade sodium alginate from kelp) solution with a multi-tip dispenser into 0.05 M CaCl2 solution in a loop fluidized bed reactor. The resultant semi-rigid spherical gels were then transferred to another reactor operated batch wise to absorb dissolved copper at low concentrations (10-40 ppm). When the concentration of the inert neutral salt NaNO3, added to the reactor fluid was 0.01 M, the amount of copper absorbed was found to be substantially higher than that at 0.1 MNaN03. The conventional Langmuir's model based on the concentration of copper in solution yielded different values of conditional stability constant at different ionic strengths in the reactor fluid. However, by defining the copper-binding stability constant on the basis of copper activity in the gel phase with the competition from calcium for metal binding sites taken into account, a unique copper-binding stability constant and a unique calcium-binding stability constant were obtained. The numerical procedure for estimating the activity of copper in the gel fluid was modified from Jang et al. Water Research, 1990, in press).  相似文献   
96.
Summary Anisotropic orientation of liquid crystalline epoxy(LCE) resin on carbon fiber(CF) surface was investigated and it was correlated with curing behavior and thermomechanical properties of LCE. Anisotropic orientation of a LCE resin was spontaneously induced on CF surface along a long molecular axis of CF during curing and the anisotropic orientation was maintained after curing. Curing of LCE was accelerated by alignment of LCE on CF and anisotropic orientation of LCE enhanced dynamic modulus of CF reinforced LCE composites.  相似文献   
97.
Electrorheological (ER) response of biocompatible particles suspended in an insulating silicone oil, was investigated under several different applied external electric field strengths. Chitosan, a biodegradable polysaccharide, was used as anhydrous ER materials. The effect of particle volume concentration on their ER response was examined by focusing on the measurement for rheological and electrical properties. The yield stress of chitosan suspended in silicone oil system as a function of applied electric field strength showed different value of slopes for different particle concentrations, however, all data points collapse onto a universal scaling function.  相似文献   
98.
社交网络和其他云应用程序应该能对从数据中心发出的请求作出快速响应,实现这种请求的技术之一是内存中的键值存储(IMKVS),它是一种缓存机制,目的是为了提高整体用户体验。一般地,IMKVS系统使用一致性哈希来决定在哪存储目标,一致性哈希使用起来方法简单,但可能引起网络负载的不平衡。为了提高IMKVS的缓存性能,提出一种软件定义网络中利用IMKVS结合NFV的分布式网络负载均衡策略。该策略包含两个阶段,第一阶段设计通用的SDN负载平衡器的模块,以运行不同的负载平衡算法;第二阶段是基于IMKVS的专业化缓存,可以实现通信管理和数据复制。仿真结果表明,相比于一致性哈希,缓存服务器上的负载可改善24%,网络上的负载可改善7%,策略能够使资源利用更合理,获得更好的用户体验。  相似文献   
99.
To synthesize new functional poly(urethane‐imide) crosslinked networks, soluble polyimide from 2,2′‐bis(3,4‐dicarboxyphenyl) hexafluoropropane dianhydride, 4,4′‐oxydianiline, and maleic anhydride and polyurethane prepolymer from polycaprolactone diol, tolylene 2,4‐diisocyanate and hydroxyl ethyl acrylate were prepared. Poly(urethane‐imide) thin films were finally prepared by the reaction between maleimide end‐capped soluble polyimide (PI) and acrylate end‐capped polyurethane (PU). The effect of polyurethane content on dielectric constant, residual stress, morphology, thermal property, and mechanical property was studied by FTIR, prism coupler, Thin Film Stress Analyzer (TFSA), XRD, TGA, DMTA, and Nano‐indentation. Dielectric constant of poly(urethane‐imide) thin films (2.39–2.45) was lower than that of pure polyimide (2.46). Especially, poly(urethane‐imide) thin films with 50% of PU showed lower dielectric constant than other poly(urethane‐imide) thin films did. Lower residual stress and slope in cooling curve were achieved in higher PU content. Compared to typical polyurethane, poly(urethane‐imide) thin films exhibited better thermal stability due to the presence of the imide groups. The glass transition temperature, modulus, and hardness decreased with increase in the flexible PU content even though elongation and thermal expansion coefficient increased. Finally, poly(urethane‐imide) thin films with low residual stress and dielectric constant, which are strongly affected by the morphological structure, chain mobility, and modulus, can be suggested to apply for electronic devices by variation of PU. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 113–123, 2006  相似文献   
100.
Blends of poly(ethylene 2,6-naphthalate) (PEN) and a liquid crystalline copolyester (LCP), poly(benzoate-naphthoate), were prepared in a twin-screw extruder. Specimens for mechanical testing were prepared by injection molding. The morphology and mechanical properties were investigated by scanning electron microscopy (SEM) and an Instron tensile tester. SEM studies revealed that finely dispersed spherical domains of the liquid crystalline polymer (LCP) were formed in the PEN matrix, and the inclusions were deformed into fibrils from the spherical droplets with increasing LCP content. The morphology of the blends was found to be affected by their composition and a distinct skin-core morphology was found to develop in the injection molded samples of these blends. Mechanical properties were improved with increasing LCP content, and synergistic effects have been observed at 70 wt% LCP content whereas the elongation at break was found to be reduced drastically above 10 wt% of LCP content. This is a characteristic typical of chopped-fiber-filled composites. The improvement in mechanical properties is likely due to the reinforcement of the PEN matrix by the fibrous LCP phase as observed by scanning electron microscopy. The tensile and modulus mechanical behavior of the LCP/PEN blends was very similar to those of the polymeric composite, and the tensile strength and flexural modulus of the LCP/PEN 70/30 blend were two times the value of PEN homopolymer and exceeded those of pure LCP, suggesting LCP acts as a reinforcing agent in the blends.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号