首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72篇
  免费   9篇
化学工业   20篇
金属工艺   1篇
机械仪表   4篇
建筑科学   1篇
能源动力   4篇
轻工业   15篇
石油天然气   1篇
无线电   4篇
一般工业技术   16篇
冶金工业   3篇
自动化技术   12篇
  2024年   1篇
  2023年   2篇
  2022年   4篇
  2021年   5篇
  2020年   7篇
  2019年   2篇
  2018年   1篇
  2017年   4篇
  2016年   6篇
  2015年   6篇
  2014年   5篇
  2013年   7篇
  2012年   9篇
  2011年   2篇
  2010年   7篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  1999年   1篇
  1998年   2篇
  1993年   1篇
  1985年   1篇
  1981年   1篇
  1965年   1篇
排序方式: 共有81条查询结果,搜索用时 15 毫秒
51.
52.
Conclusions An increase in reduction temperature leads to a decrease in the specific surface area of a catalyst and an increase in the pore radius of deposited iron-copper catalysts. For synthesis at 30 atm a catalyst reduced at 415°C to a 33–35% metallic iron content has the greatest activity and selectivity.  相似文献   
53.
54.
Ferromagnetic monolayers Co90Fe10 thin films with individual layer thicknesses 2, 6, and 8 nm were grown on thermally oxidized Si substrate and magnetic properties of these were investigated with Ferromagnetic resonance (FMR) technique at room temperature. The magnetoresistance (MR) of the samples were measured as a function of applied DC magnetic field and the thickness dependence of the MR was plotted. The FMR spectra were recorded for both parallel and perpendicular geometry. The X-band (9.5 GHz) FMR spectra and resonance field of samples were analyzed and fitted theoretically by using the Landau-Lifshits dynamic equation of motion for magnetization with the Bloch-Bloembergen type damping term. The computer programs have been written to extract the effective magnetization (M), g-values and spin-spin relaxation time (T2) fitting parameters. The thickness dependence of magnetic parameters has been obtained from experimental data by mean of a theoretical model.  相似文献   
55.
Poly(butyl acrylate‐co‐methyl methacrylate) (BA‐co‐MMA) nanocomposite latexes were synthesized in the presence of sodium montmorillonite (Na‐MMT) and cellulose nanocrystal (CNC) as fillers. Nanocomposite preparation with 3 wt% Na‐MMT based upon the total monomer amount was conducted by semi‐batch emulsion polymerization. Furthermore, direct blending of neat copolymer latex with Na‐MMT was performed for comparison. CNC/BA‐co‐MMA nanocomposites were obtained via blending process with varying CNC content (1, 2, and 3 wt %). Good dispersion of both Na‐MMT and CNC within the copolymer matrix was achieved as demonstrated by X‐ray diffraction and transmission electron microscope. Particle size of the nanocomposite latexes was around 120 nm. Thermal, mechanical, and barrier properties of the copolymer showed great improvement with the addition of both Na‐MMT and CNC. CNC nanocomposites displayed enhanced properties with increasing CNC level. Tensile strength of copolymer latex with 3 wt% CNC reached 262.5% of the pristine latex, while tensile strength of Na‐MMT nanocomposite at the same content was 187.5% of the pristine latex. POLYM. ENG. SCI., 55:2922–2928, 2015. © 2015 Society of Plastics Engineers  相似文献   
56.
57.
58.
This study investigated the dentinal tubule penetration of mineral trioxide aggregate (MTA), NeoMTA Plus and Biodentine placed by either manual condensation or ultrasonic activation in simulated open apex model. Standardized divergent open apex models were created using palatal roots of 60 human maxillary molars and divided into six groups according to the used cements and activation methods (n = 10): MTA‐manual condensation, MTA‐ultrasonic activation, NeoMTA Plus‐manual condensation, NeoMTA Plus‐ultrasonic activation, Biodentine‐manual condensation, Biodentine‐ultrasonic activation. For the measurement of penetration, the cements were mixed with 0.1% Rhodamin B and 6‐mm apical portions of each root canal were obturated in an orthograde direction. The roots were embedded into acrylic blocks, and 1‐mm‐thick sections were obtained at 3 mm from the apex. Specimens were mounted onto glass slides and scanned under a confocal laser scanning microscope (CLSM) and stereomicroscope. Dentinal tubule penetration areas, depth and percentage were measured using LSM and ImageJ software. The data were analyzed using two‐way analysis of variance (anova ) with Bonferroni correction (α = 0.05). No correlation was found between stereomicroscope and CLSM analyses (p > .05). CLSM analysis showed no significant differences between MTA, NeoMTA Plus, and Biodentine groups when manual condensation was used (p > .05). Ultrasonic activation did not increase the tubular penetration of MTA, NeoMTA Plus or Biodentine as compared to manual condensation of each material (p > .05). MTA, NeoMTA Plus and Biodentine showed similar tubular penetration when manual condensation was used. Ultrasonic activation of these cements had no effect on tubular penetration of each material as compared to the manual condensation counterparts.  相似文献   
59.
The effects of the ferromagnetic (FM) Co layer thickness on magnetic anisotropies and exchange bias (EB) properties of Co/CoO bilayers have been investigated by using ferromagnetic resonance (FMR) and vibrating sample magnetometer (VSM) techniques. The temperature and thickness dependence of EB were studied in temperature range of 4?C320?K. FMR and VSM measurements show that Co/CoO bilayers exhibit negative exchange bias just below the blocking temperature (T B). Room-temperature in-plane FMR measurements reveal that the Co layer was epitaxially grown on MgO substrate with four-fold magneto-crystalline symmetry. The data also show that the easy axis of magnetization is in the film plane and parallel to the ??110?? crystallographic directions of MgO substrate in all samples.  相似文献   
60.
Our study is concerned with the development of a novel type of layer-by-layer (LbL) self-assembled membrane from a single cationic polyelectrolyte (PE) and blended anionic PEs. Their synthetic seawater stability is investigated as a function of PE type and blend ratios using quartz crystal microbalance-dissipation (QCM-D). These materials adsorbed into multilayers with significant viscoelasticity. Poly(allylamine hydrochloride) (PAH) and poly(vinylamine hydrochloride) (PVA) based LbL blend films did not show any multilayer decomposition with the addition of synthetic seawater regardless of blend ratio while chitosan based multilayers disintegrated. The flux of PVA based blend membrane to water with 1,000 ppm NaCl was found to be 6.7 L/m2.h at 40 bar and the flux properties of the membranes were highly dependent on both the thickness and hydrophilicity of multilayers. Ion rejection can be controlled with the charge of the top layer consistent with a Donnan exclusion approach. Sodium ion rejection of 60.5 layered LbL blend membrane was 98.4% at 40 bar and it was determined that sodium ion rejection improved 110.7% compared to a commercial nanofiltration membrane. POLYM. ENG. SCI., 60:1006–1018, 2020. © 2020 Society of Plastics Engineers  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号