Water Resources Management - Parameter calibration is a core process for the application of distributed hydrological models, which depends strongly on river runoff records. However, the sparse... 相似文献
Knowledge and Information Systems - In the past decade, human activity recognition (HAR) has grown in popularity due to its applications in security and entertainment. As recent years have... 相似文献
Applied Intelligence - Personnel performance is a key factor to maintain core competitive advantages. Thus, predicting personnel future performance is a significant research domain in human... 相似文献
Interactive genetic algorithms are effective methods of solving optimization problems with implicit (qualitative) criteria by incorporating a user's intelligent evaluation into traditional evolution mechanisms. The heavy evaluation burden of the user, however, is crucial and limits their applications in complex optimization problems. We focus on reducing the evaluation burden by presenting a semi-supervised learning assisted interactive genetic algorithm with large population. In this algorithm, a population with many individuals is adopted to efficiently explore the search space. A surrogate model built with an improved semi-supervised learning method is employed to evaluate a part of individuals instead of the user to alleviate his/her burden in evaluation. Incorporated with the principles of the improved semi-supervised learning, the opportunities of applying and updating the surrogate model are determined by its confidence degree in estimation, and the informative individuals reevaluated by the user are selected according to the concept of learning from mistakes. We quantitatively analyze the performance of the proposed algorithm and apply it to the design of sunglasses lenses, a representative optimization problem with one qualitative criterion. The empirical results demonstrate the strength of our algorithm in searching for satisfactory solutions and easing the evaluation burden of the user. 相似文献
Catalysis Letters - Hematite (α-Fe2O3) is a potential photoanode material for photoelectrochemical (PEC) water splitting, but its short hole diffusion length and low water oxidation kinetics... 相似文献
Comparative experiments are performed in friction stir welding (FSW) of dissimilar Al/Mg alloys with and without assistance of ultrasonic vibration. Metallographic characterization of the welds at transverse cross sections reveals that ultrasonic vibration induces differences in plastic material flow in two conditions. In FSW, the plastic material in the peripheral area of shoulder-affected zone (SAZ) tends to flow downward because of the weakening of the driving force of the shoulder, and a plastic material insulation layer is formed at the SAZ edge. When ultrasonic vibration is exerted, the stirred zone is divided into the inner and outer shear layers, the downward material flow trend of the inner shear layer disappears and tends to flow upward, and the onion-ring structure caused by the swirl motion is avoided in the pin-affected zone. By improving the flow behavior of plastic materials in the stirred zone, ultrasonic vibration reduces the heat generation, accelerates the heat dissipation in nugget zone and changes the thermal cycles, thus inhibiting the formation of intermetallic compound layers.