首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112篇
  免费   4篇
电工技术   1篇
化学工业   11篇
金属工艺   21篇
机械仪表   9篇
建筑科学   2篇
能源动力   3篇
轻工业   9篇
水利工程   4篇
无线电   12篇
一般工业技术   19篇
冶金工业   9篇
自动化技术   16篇
  2023年   1篇
  2022年   6篇
  2021年   4篇
  2020年   10篇
  2019年   5篇
  2018年   9篇
  2017年   3篇
  2016年   4篇
  2015年   2篇
  2014年   8篇
  2013年   5篇
  2012年   13篇
  2011年   9篇
  2010年   6篇
  2009年   5篇
  2008年   6篇
  2007年   2篇
  2006年   4篇
  2005年   3篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1996年   2篇
  1993年   1篇
  1992年   1篇
  1988年   1篇
  1987年   1篇
  1982年   1篇
  1980年   1篇
排序方式: 共有116条查询结果,搜索用时 0 毫秒
111.
Prediction of drug synergy score is an ill‐posed problem. It plays an efficient role in the medical field for inhibiting specific cancer agents. An efficient regression‐based machine learning technique has an ability to minimise the drug synergy prediction errors. Therefore, in this study, an efficient machine learning technique for drug synergy prediction technique is designed by using ensemble based differential evolution (DE) for optimising the support vector machine (SVM). Because the tuning of the attributes of SVM kernel regulates the prediction precision. The ensemble based DE employs two trial vector generation techniques and two control attributes settings. The initial generation technique has the best solution and the other is without the best solution. The proposed and existing competitive machine learning techniques are applied to drug synergy data. The extensive analysis demonstrates that the proposed technique outperforms others in terms of accuracy, root mean square error and coefficient of correlation.Inspec keywords: cancer, evolutionary computation, support vector machines, regression analysis, drugs, learning (artificial intelligence), medical computingOther keywords: ensemble based differential evolution, specific cancer agents, efficient regression‐based machine learning technique, drug synergy prediction errors, efficient machine learning technique, drug synergy prediction technique, support vector machine, prediction precision, trial vector generation techniques, initial generation technique, drug synergy data, drug synergy score prediction, medical field, SVM kernel attributes, ensemble based DE, control attribute settings, competitive machine learning techniques, root mean square error  相似文献   
112.
The authors report the development of AlxCoCrFeNi (x = 0.1 to 3) high entropy alloy (HEA) coatings using a simple and straightforward microwave technique. The microstructure of the developed coatings is composed of a cellular structure and diffused interface with the substrate. The microstructure of the HEA coatings varies as a direct function of Al content. An increase in Al fraction shows structural transformation from FCC to BCC along with the evolution of σ and B2 as the major secondary phases. The diffusion of Mo from the substrate enhances the mixing entropy and promotes σ‐phase formation. The HEA coatings show significantly high hardness compared to SS316L substrate steel (227 HV) with a maximum value of 726 HV observed for three‐molar composition. The fracture toughness exhibits an inverse correlation with the Al fraction with the highest value of around 49 MPa m1/2 observed for Al0.1CoCrFeNi coating. The equimolar coating composition shows lowest erosion rates among all the tested samples due to optimum combination of the mechanical properties. The erosion resistance of the equimolar coating is 2 to 5 times higher than steel substrate and around 1.5 times higher than the non‐equimolar counterparts depending upon the impingement angles.
  相似文献   
113.
A new algorithm for determination of state equations for Petri nets has been proposed. The proposed algorithm results in state equations similar to the state equations for linear sequential machines. All Petri nets may not be represented in the form of linear sequential machines. The resulting state equations are different from Petri net state equations and include output equations used in control theory literature.  相似文献   
114.
115.
Kumar  Deepak  Rajak  Santosh Kumar  Seetharam  R.  Singh  Harpreet 《SILICON》2023,15(5):2297-2311
Silicon - The objective of the present work is to study the mechanical and tribological properties of SiC-hBN such as hardness, density, fracture toughness, friction and wear behavior with and...  相似文献   
116.

The current study is focused on the microstructure, phase transition, and mechanical properties of the aluminum yttrium oxide (Al–Y2O3) composite material. Microwave hybrid sintering using Y2O3 nanoparticles as reinforcement at various (i.e., 0.5, 2, 3.5 and 5) wt% was used. Simultaneous thermal analysis (STA) and X-ray photoelectric spectroscopy (XPS) were used to investigate the chemical interaction between Al and Y2O3. This research will aid in gaining a better knowledge of the changes in thermal characteristics and compositional changes that occur throughout the microwave hybrid sintering process. The insight into material properties reveals that intermetallic Al3Y and Al2O3 are generated during the synthesis process, which was substantiated by X-ray diffraction (XRD) and energy dispersive spectroscopy (EDX) analysis. The Al–Y2O3 composite material has a well-consolidated microstructure and improved mechanical characteristics. To further understand material behaviour, a robust and non-destructive depth sensing nano-indentation technology was being used. With the addition of 5 wt% Y2O3, the microhardness of composite material is enhanced by 1.62 times. Furthermore, with 5 wt% Y2O3, the produced composite's nano hardness and elastic modulus augmented by 2.43 and 1.8 times, respectively. It is caused by the presence of intermetallic in the composite material, as well as the prevalence of uniform reinforcement distribution.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号