首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   190篇
  免费   13篇
电工技术   8篇
化学工业   66篇
金属工艺   5篇
机械仪表   2篇
建筑科学   2篇
能源动力   17篇
轻工业   23篇
水利工程   2篇
无线电   9篇
一般工业技术   29篇
冶金工业   20篇
原子能技术   3篇
自动化技术   17篇
  2024年   1篇
  2023年   3篇
  2022年   6篇
  2021年   7篇
  2020年   2篇
  2019年   2篇
  2018年   3篇
  2017年   6篇
  2016年   10篇
  2015年   4篇
  2014年   8篇
  2013年   12篇
  2012年   7篇
  2011年   4篇
  2010年   8篇
  2009年   14篇
  2008年   9篇
  2007年   12篇
  2006年   9篇
  2005年   2篇
  2004年   8篇
  2003年   7篇
  2002年   5篇
  2001年   7篇
  2000年   2篇
  1999年   5篇
  1998年   10篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   4篇
  1993年   4篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   4篇
  1988年   1篇
  1984年   2篇
  1983年   3篇
  1977年   2篇
排序方式: 共有203条查询结果,搜索用时 15 毫秒
71.
Recently, submicron textures have been researched and applied to multicrystalline silicon solar cells in order to improve their optical performance. In this study, the antireflection and light trapping effects of submicron surface textures in crystalline Si (c‐Si) solar cells were quantitatively investigated by numerical simulations based on Maxwell's equations with a simple two‐dimensional (2D) surface grating model. The calculated results showed that the surface reflection loss can be effectively reduced by using submicron Si surface gratings with appropriate aspect ratios. On the other hand, higher order diffractions that are caused by surface gratings that increase optical path lengths and light absorption near the band gap wavelength are dominant only for those with periods greater than 0·5 µm. From these results, it was inferred that submicron textures are effective for light trapping as well as for antireflection in thin c‐Si solar cells if appropriate dimensions are chosen. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
72.
A precise determination of the critical temperature and density for technically important fluids would be possible on the basis of the digital image for the visual observation of the phase boundary in the vicinity of the critical point since the sensitivity and resolution are higher than those of naked eyes. In addition, the digital image can avoid the personal uncertainty of an observer. A strong density gradient occurs in a sample cell at the critical point due to gravity. It was carefully assessed to determine the critical density, where the density profile in the sample cell can be observed from the luminance profile of a digital image. The density-gradient profile becomes symmetric at the critical point. One of the best fluids, whose thermodynamic properties have been measured with the highest reliability among technically important fluids, would be carbon dioxide. In order to confirm the reliability of the proposed method, the critical temperature and density of carbon dioxide were determined using the digital image. The critical temperature and density values of carbon dioxide are ( \(304.143\,\pm \,0.005)\hbox { K}\) and ( \(467.7\,\pm \,0.6)\) kg \(\cdot \) m \(^{-3}\) , respectively. The critical temperature and density values agree with the existing best values within estimated uncertainties. The reliability of the method was confirmed. The critical pressure, 7.3795 MPa, corresponding to the determined critical temperature of 304.143 K is also proposed. A new set of parameters for the vapor-pressure equation is also provided.  相似文献   
73.
Two-probe conductivity measurements made for M3P2O8 (M = Ca, Ba) suggested that the electrical conduction of these phosphates would primarily be due to the migration of Ca2+ and Ba2+ ions. At relatively low temperatures and high oxygen partial pressures, in contrast to Ca3P2O8, however, Ba3P2O8 shows partial electronic conduction.  相似文献   
74.
The performance of boron-doped CZ Si solar cell is degraded by the light irradiation and/or the minority carrier (electron) injection. To understand these phenomena, ab initio molecular orbital calculations are carried out using a cluster model. The theoretical results indicate that the activation energy for kicking out a substitutional B by the interstitial Si is decreased due to the injected electron. Therefore, the interstitial B is easily produced by the minority carrier injection and then diffuses in the Si crystal, resulting in the generation of the interstitial B and interstitial O defect complex.  相似文献   
75.
A compact multi-purpose spindle for multi-tasking machine tools has been developed such that it can provide high power and torque for lower speed ranges while it rotates at high speeds for light duty machining. The innovative design based on the dual direct drive concept has been adopted such that the size of the spindle can stay the same as a conventional spindle of its class. For optimizing the design process, a method based on the complete virtual approach using 3D solid models has been studied and developed. Machining performance has been verified through a physical prototype.  相似文献   
76.
The Pk-glpK gene, which encodes glycerol kinase (GK) from a hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1, was cloned and expressed in Escherichia coli. The amino acid sequence of this enzyme (Pk-GK) deduced from the nucleotide sequence showed 57% identity with that of E. coli GK and 47% identity with that of human GK. Pk-GK, which has a molecular weight of 55902 (497 amino acid residues), was purified from E. coli and characterized. Despite the high sequence similarity, Pk-GK and E. coli GK are greatly divergent in structure and function from each other. Unlike E. coli GK, which exists as a tetramer, Pk-GK exists as a dimer. The preferred divalent cation for Pk- GK is Co2+, instead of Mg2+. The optimum pH and temperature for Pk-GK activity are 8.0 and 80 degrees C, respectively. Pk-GK can utilize other nucleoside triphosphates than ATP as a phosphoryl donor. It is fairly resistant to an allosteric inhibitor of E. coli GK, fructose-1,6- bisphosphate. Determination of the kinetic parameters indicates that the Km value of the enzyme is 15.4 microM for ATP and 111 microM for glycerol and its kcat value is 940 s(-1). The enzyme was shown to be fairly resistant to irreversible heat inactivation and still retained 50% of its enzymatic activity even after heating at 100 degrees C for 30 min. Construction of a model for the three-dimensional structure of the enzyme suggests that the formation of extensive ion-pair networks is responsible for the high stability of this enzyme.   相似文献   
77.
Pd and Pd–Zn alloy were supported on various supporting materials using impregnation, co-precipitation and microemulsion methods, and their catalytic performances in oxidative methanol reforming (OMR) were investigated. Pd/ZnO exhibited much higher selectivity than either Pd/Al2O3 or Pd/ZrO2 in the OMR for hydrogen production. This was attributed to the presence of Pd–Zn alloy on the ZnO support. Elemental Pd on Al2O3 or ZrO2 promotes methanol decomposition reaction and increases CO formation. Using a microemulsion method, a highly selective Pd/ZnO can be obtained with much lower Pd loading than that in samples prepared by co-precipitation. Modification of Al2O3 with ZnO produced a ZnAl2O4 phase, which was found to be a good support for the Pd/ZnO catalyst. Highly active and selective Pd/ZnO/ZnAl2O4 catalysts for the OMR reaction, containing much lower Pd loadings have been developed by impregnation of the supports with an aqueous solution of Pd(NO3)2 + Zn(NO3)2.  相似文献   
78.
Fracture behavior of amorphous poly(ethylene terephthalate) (PET) films added multiwalled carbon nanotube (MWCNT) has been compared with that of the PET films added with carbon black (CB) to elucidate the effects of the large aspect ratio of MWCNT. Fracture toughness has been evaluated using the essential work of fracture tests. Evolution of the crazes has been analyzed by conducting time‐resolved small‐angle X‐ray scattering measurements during tensile deformation of the films at room temperature using synchrotron radiation. CB and MWCNT increased the fracture toughness of the PET film by increasing the plastic work of fracture. This resulted from the effects of the fillers to prevent the localization of deformation upon the crazes formed at earlier stages of tensile deformation and to retard the growth of the fibrils in the crazes to a critical length. The CB particles provided a number of sites where the crazes were preferably formed due to stress concentration. In the case of MWCNT, on the other hand, the widening of the crazes formed at earlier stages was suppressed due to the bridging effect arising from the large aspect ratio of MWCNT. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   
79.
To extract the general structural features of interacting protein pairs, the non-redundant homo-oligomer interfaces (393 interfaces) in the PDB were analyzed using the fine-grained molecular surface, electrostatic potentials and the hydrophobicity calculated as the solvation free energy using empirical parameters. For each property, statistical analyses of the degree of complementarity were carried out, and we developed a method to judge whether interfaces were shape-complementary, electrostatic-complementary and/or hydrophobic-complementary or not. In order to search for the correlation between the property complementarity and structure of the interfaces, at first, we roughly classified all the interfaces into the following five groups according to the structure of the interface and surveyed the correlation between the shape classification and the complementary: cyclic-oligomer (69), twisted-dimer (27), dimer-parallel (14), dimer-perpendicular (109) and dimer-circular (174), where the number in the parenthesis is the number of interfaces in each group. As a result, we found the new characteristic trends as the possible necessary conditions in the formation of homo-oligomer interfaces, especially from the viewpoint of electrostatic complementarity. In addition, we also show that complementarity analyses can be used to discriminate the biological-interface from the crystallographic-interface in homo-oligomer proteins.  相似文献   
80.
In this work, CdS/SiC/TiO2 tri-composite photocatalysts that exploit electron- and hole-transfer processes were fabricated using an easy two-step method in the liquid phase. The photocatalyst with a 1:1:1 M ratio of CdS/SiC/TiO2 exhibited a rate of hydrogen evolution from an aqueous solution of sodium sulfite and sodium sulfide under visible light of 137 μmol h?1 g?1, which is 9.5 times that of pure CdS. β-SiC can act as a sink for the photogenerated holes because the valence band level of β-SiC is higher than the corresponding bands in CdS and TiO2. In addition, the level of the conduction band of TiO2 is lower than those of CdS and β-SiC, so TiO2 can act as the acceptor of the photogenerated electrons. Our results demonstrate that hole transfer and absorption in the visible light region lead to an effective hydrogen-production scheme.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号