全文获取类型
收费全文 | 4392篇 |
免费 | 386篇 |
国内免费 | 26篇 |
专业分类
电工技术 | 63篇 |
综合类 | 29篇 |
化学工业 | 959篇 |
金属工艺 | 173篇 |
机械仪表 | 294篇 |
建筑科学 | 68篇 |
矿业工程 | 6篇 |
能源动力 | 196篇 |
轻工业 | 347篇 |
水利工程 | 28篇 |
石油天然气 | 6篇 |
武器工业 | 1篇 |
无线电 | 888篇 |
一般工业技术 | 1100篇 |
冶金工业 | 177篇 |
原子能技术 | 37篇 |
自动化技术 | 432篇 |
出版年
2024年 | 9篇 |
2023年 | 77篇 |
2022年 | 107篇 |
2021年 | 180篇 |
2020年 | 124篇 |
2019年 | 131篇 |
2018年 | 137篇 |
2017年 | 174篇 |
2016年 | 187篇 |
2015年 | 164篇 |
2014年 | 224篇 |
2013年 | 319篇 |
2012年 | 309篇 |
2011年 | 368篇 |
2010年 | 272篇 |
2009年 | 256篇 |
2008年 | 241篇 |
2007年 | 199篇 |
2006年 | 181篇 |
2005年 | 153篇 |
2004年 | 102篇 |
2003年 | 118篇 |
2002年 | 102篇 |
2001年 | 91篇 |
2000年 | 82篇 |
1999年 | 72篇 |
1998年 | 96篇 |
1997年 | 67篇 |
1996年 | 57篇 |
1995年 | 39篇 |
1994年 | 25篇 |
1993年 | 22篇 |
1992年 | 23篇 |
1991年 | 17篇 |
1990年 | 19篇 |
1989年 | 22篇 |
1988年 | 5篇 |
1987年 | 9篇 |
1986年 | 5篇 |
1985年 | 7篇 |
1984年 | 3篇 |
1983年 | 1篇 |
1982年 | 3篇 |
1981年 | 2篇 |
1979年 | 1篇 |
1975年 | 1篇 |
1972年 | 1篇 |
排序方式: 共有4804条查询结果,搜索用时 15 毫秒
81.
(西北工业大学计算机学院,陕西西安,710072)【摘要】CARD架构适用于大规模、高查询率、每次查询的数据传输量较小的Ad-hoc网络,它的核心目标是降低网络资源发现能耗,延长网络生命周期。文章首先介绍了CARD架构的结构;然后,建立了该架构的数学模型,该模型以无线传感器网络为目标场景,并推导出CARD架构的能耗和查询成功率与各个参数之间的函数关系;最后,根据该模型对CARD架构的能耗和查询成功率进行了理论分析,为CARD架构的参数选择提供了可靠的依据,并为对架构的进一步优化打下了坚实基础。 相似文献
82.
Suyeong Seo Minjeong Jang Hwieun Kim Jong Hwan Sung Nakwon Choi Kangwon Lee Hong Nam Kim 《Advanced functional materials》2023,33(12):2210123
Air pollution induces neurodegeneration, including cognitive deficits, neuroinflammation, and disruption of the blood–brain barrier. The mechanisms underlying air pollution-mediated neurodegeneration have not yet been fully elucidated given the limited knowledge on intercellular interactions. A brain-on-a-chip platform is presented comprising neurons, glia, and brain endothelial cells (bECs; neuro-glia-vascular, NGV) and diesel exhaust particle (DEP)-induced neurodegeneration is evaluated with a particular focus on the intercellular interactions. DEP exposure in the NGV model yields Alzheimer's disease-like signatures, including amyloid beta accumulation, tau phosphorylation, hydrogen peroxide (H2O2)/reactive oxygen species (ROS) production, and neuronal cell death. bEC-secreted granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulates microglial activation and the overproduction of H2O2/ROS in microglia, suggesting that the bEC-microglia-neuron is a neurodegeneration cascade. Pharmacological inhibition at each step of the cascade, including GM-CSF neutralization, microglial activation suppression, and ROS scavenging, prohibits neurodegeneration in the NGV model. Therefore, intercellular interactions should be further studied of air pollution-induced neurodegeneration. 相似文献
83.
Hyeon Woo Park Minsik Oh In Soo Lee Seungyong Byun Yoon Ho Jang Yong Bin Lee Beom Yong Kim Suk Hyun Lee Seung Kyu Ryoo Doosup Shim Jae Hoon Lee Hani Kim Kyung Do Kim Cheol Seong Hwang 《Advanced functional materials》2023,33(9):2206637
The negative capacitance (NC) effect, recently discovered in a fluorite-based ferroelectric thin film, has attracted great attention as a rescue to overcome the scaling limitations of the conventional memory and logic devices of highly integrated circuits. The NC effect manifesting an S-shaped polarization–voltage (P–V) curve is initially interpreted by a 1-dimensional Landau Ginzburg Devonshire (LGD) model. However, a series of recent studies have found that this effect can also be explained by the inhomogeneous stray field energy (ISE) model. In this study, by extending the ISE model in the ferroelectric (FE)-dielectric (DE) layered structure, an analytical model that considers the influence of the interfacial screening charge distribution is presented. This model showed that the NC effect in the FE-DE heterostructure can be manifested in various forms other than a single S-shaped P–V curve. In particular, a double S-shaped P–V curve is expected from the fully compensated anti-parallel domain structure, confirmed experimentally in the actual Al2O3/(Hf0.5Zr0.5)O2/Al2O3 triple-layer structure. Furthermore, to reveal the origin of the double S-shaped P–V curve, a multidomain LGD model is presented. It is confirmed that this phenomenon is attributed to the evolution of inhomogeneous stray field energy. 相似文献
84.
Sung-Dong Cho Jang K.-W. Jin-Gul Hyun Sangyong Lee Kyung-Wook Paik Hyungsoo Kim Joung-Ho Kim 《Electronics Packaging Manufacturing, IEEE Transactions on》2005,28(4):297-303
Epoxy/BaTiO/sub 3/ composite embedded capacitor films (ECFs) were newly designed for high dielectric constant and low-tolerance (less than /spl plusmn/5%) embedded capacitor fabrication for organic substrates. In terms of material formulation, ECFs are composed of a specially formulated epoxy resin and latent curing agent, and in terms of a coating process, a comma roll coating method is used for uniform film thickness in large area. The dielectric constant of ECF in high frequency range (0.5/spl sim/3 GHz) is measured using the cavity resonance method. In order to estimate dielectric constant, the reflection coefficient is measured with a network analyzer. The dielectric constant is calculated by observing the frequencies of the resonant cavity modes. Calculated dielectric constants in this frequency range are about 3/4 of the dielectric constants at 1 MHz. This difference is due to the decrease of the dielectric constant of the epoxy matrix. The dielectric relaxation of barium titanate (BaTiO/sub 3/: BT) powder is not observed within measured frequency. An alternative material for embedded capacitor fabrication is epoxy/BaTiO/sub 3/ composite embedded capacitor paste (ECP). It uses similar materials formulation like ECF and a screen printing method for film coating. The screen printing method has the advantage of forming a capacitor partially in the desired part. However, the screen printing makes surface irregularities during mask peel-off. Surface flatness is significantly improved by adding some additives and by applying pressure during curing. As a result, a dielectric layer with improved thickness uniformity is successfully demonstrated. Using epoxy/BaTiO/sub 3/ composite ECP, a dielectric constant of 63 and specific capacitance of 5.1 nF/cm/sup 2/ were achieved. 相似文献
85.
Jung Joo Park Tae Jin Park Woo Sik Jeon Ramchandra Pode Jin Jang Jang Hyuk Kwon Eun-Sun Yu Mi-Young Chae 《Organic Electronics》2009,10(1):189-193
Using a 4,4′,4′′-tris(N-carbazolyl)-triphenylamine (TCTA) small molecule interlayer, we have fabricated efficient green phosphorescent organic light emitting devices by solution process. Significantly a low driving voltage of 3.0 V to reach a luminance of 1000 cd/m2 is reported in this device. The maximum current and power efficiency values of 27.2 cd/A and 17.8 lm/W with TCTA interlayer (thickness 30 nm) and 33.7 cd/A and 19.6 lm/W with 40 nm thick interlayer are demonstrated, respectively. Results reveal a way to fabricate the phosphorescent organic light emitting device using TCTA small molecule interlayer by solution process, promising for efficient and simple manufacturing. 相似文献
86.
Effective Polysulfide Rejection by Dipole‐Aligned BaTiO3 Coated Separator in Lithium–Sulfur Batteries 下载免费PDF全文
Taeeun Yim Seung Ho Han Nam Hwan Park Min‐Sik Park Ji Hoon Lee Jaeho Shin Jang Wook Choi Yongju Jung Yong Nam Jo Ji‐Sang Yu Ki Jae Kim 《Advanced functional materials》2016,26(43):7817-7823
Although the exceptional theoretical specific capacity (1672 mAh g?1) of elemental sulfur makes lithium–sulfur (Li–S) batteries attractive for upcoming rechargeable battery applications (e.g., electrical vehicles, drones, unmanned aerial vehicles, etc.), insufficient cycle lives of Li–S cells leave a substantial gap before their wide penetration into commercial markets. Among the key features that affect the cyclability, the shuttling process involving polysulfides (PS) dissolution is most fatal. In an effort to suppress this chronic PS shuttling, herein, a separator coated with poled BaTiO3 or BTO particles is introduced. Permanent dipoles that are formed in the BTO particles upon the application of an electric field can effectively reject PS from passing through the separator via electrostatic repulsion, resulting in significantly improved cyclability, even when a simple mixture of elemental sulfur and conductive carbon is used as a sulfur cathode. The coating of BTO particles also considerably suppresses thermal shrinkage of the poly(ethylene) separator at high temperatures and thus enhances the safety of the cell adopting the given separator. The incorporation of poled particles can be universally applied to a wide range of rechargeable batteries (i.e., metal‐air batteries) that suffer from cross‐contamination of charged species between both electrodes. 相似文献
87.
Mihaela Nedelcu Mohammad S. M. Saifullah David G. Hasko Arang Jang David Anderson Wilhelm T. S. Huck Geraint A. C. Jones Mark E. Welland Dae Joon Kang Ullrich Steiner 《Advanced functional materials》2010,20(14):2317-2323
The fabrication of very narrow metal lines by the lift‐off technique, especially below sub‐10 nm, is challenging due to thinner resist requirements in order to achieve the lithographic resolution. At such small length scales, when the grain size becomes comparable with the line‐width, the built‐in stress in the metal film can cause a break to occur at a grain boundary. Moreover, the line‐width roughness (LWR) from the patterned resist can result in deposited metal lines with a very high LWR, leading to an adverse change in device characteristics. Here a new approach that is not based on the lift‐off technique but rather on low temperature hydrogen reduction of electron‐beam patterned metal naphthenates is demonstrated. This not only enables the fabrication of sub‐10 nm metal lines of good integrity, but also of low LWR, below the limit of 3.2 nm discussed in the International Technology Roadmap for Semiconductors. Using this method, sub‐10 nm nickel wires are obtained by reducing patterned nickel naphthenate lines in a hydrogen‐rich atmosphere at 500 °C for 1 h. The LWR (i.e., 3 σLWR) of these nickel nanolines was found to be 2.9 nm. The technique is general and is likely to be suitable for fabrication of nanostructures of most commonly used metals (and their alloys), such as iron, cobalt, nickel, copper, tungsten, molybdenum, and so on, from their respective metal–organic compounds. 相似文献
88.
Hollow tin dioxide (SnO2) microspheres were synthesized by the simple heat treatment of a mixture composed of tin(IV ) tetrachloride pentahydrate (SnCl4·5H2O) and resorcinol–formaldehyde gel (RF gel). Because hollow structures were formed during the heat treatment, the pre‐formation of template and the adsorption of target precursor on template are unnecessary in the current method, leading to simplified synthetic procedures and facilitating mass production. Field‐emission scanning electron microscopy (FE‐SEM) images showed 1.7–2.5 μm sized hollow spherical particles. Transmission electron microscopy (TEM) images showed that the produced spherical particles are composed of a hollow inner cavity and thin outer shell. When the hollow SnO2 microspheres were used as a lithium‐battery anode, they exhibited extraordinarily high discharge capacities and coulombic efficiency. The reported synthetic procedure is straightforward and inexpensive, and consequently can be readily adopted to produce large quantities of hollow SnO2 microspheres. This straightforward approach can be extended for the synthesis of other hollow microspheres including those obtained from ZrO2 and ZrO2/CeO2 solid solutions. 相似文献
89.
A laterally coupled InGaAsP-InP distributed-feedback (DFB) laser operating around 1.55 mum was fabricated through a novel technique for the formation of metal surface gratings by holographic lithography. The self-aligned Cr DFB gratings were formed on the sidewalls as well as on both sides of the laser ridge by means of angled e-beam evaporation of Ti mask and metal-SiO2 lift-off on the top of ridges. For an uncoated 3-mum-wide and 300-mum-long cavity, the device emitted an output power of ~9.7 mW/facet at an injection current of 100 mA with a threshold current of 29 mA and a slope efficiency of 0.14 mW/mA per facet at 20 degC under continuous-wave mode. A stable single-mode emission near 1.54 mum with a sidemode suppression ratio of nearly 28 dB was observed and a tuning coefficient of 0.21 nm/K was obtained in the temperature range of 15 degC -55 degC. 相似文献
90.
With the advent of the Internet‐of‐Things paradigm, the amount of data production has grown exponentially and the user demand for responsive consumption of data has increased significantly. Herein, we present DART, a fast and lightweight stream processing framework for the IoT environment. Because the DART framework targets a geospatially distributed environment of heterogeneous devices, the framework provides (1) an end‐user tool for device registration and application authoring, (2) automatic worker node monitoring and task allocations, and (3) runtime management of user applications with fault tolerance. To maximize performance, the DART framework adopts an actor model in which applications are segmented into microtasks and assigned to an actor following a single responsibility. To prove the feasibility of the proposed framework, we implemented the DART system. We also conducted experiments to show that the system can significantly reduce computing burdens and alleviate network load by utilizing the idle resources of intermediate edge devices. 相似文献